首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31629篇
  免费   5579篇
  国内免费   8993篇
化学   24368篇
晶体学   1101篇
力学   1853篇
综合类   764篇
数学   3794篇
物理学   14321篇
  2024年   83篇
  2023年   413篇
  2022年   1143篇
  2021年   1180篇
  2020年   1217篇
  2019年   1217篇
  2018年   1082篇
  2017年   1441篇
  2016年   1407篇
  2015年   1756篇
  2014年   2153篇
  2013年   2663篇
  2012年   2873篇
  2011年   3135篇
  2010年   2757篇
  2009年   2697篇
  2008年   2941篇
  2007年   2594篇
  2006年   2505篇
  2005年   2000篇
  2004年   1452篇
  2003年   1099篇
  2002年   1062篇
  2001年   1088篇
  2000年   1019篇
  1999年   640篇
  1998年   371篇
  1997年   305篇
  1996年   251篇
  1995年   223篇
  1994年   205篇
  1993年   208篇
  1992年   214篇
  1991年   96篇
  1990年   107篇
  1989年   101篇
  1988年   99篇
  1987年   80篇
  1986年   66篇
  1985年   48篇
  1984年   42篇
  1983年   46篇
  1982年   21篇
  1981年   23篇
  1980年   10篇
  1979年   30篇
  1978年   6篇
  1971年   5篇
  1959年   7篇
  1957年   4篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
A numerical model was developed and validated to investigate the fluid–structure interactions between fully developed pipe flow and core–shell-structured microcapsule in a microchannel. Different flow rates and microcapsule shell thicknesses were considered. A sixth-order rotational symmetric distribution of von Mises stress over the microcapsule shell can be observed on the microcapsule with a thinner shell configuration, especially at higher flow rate conditions. It is also observed that when being carried along in a fully developed pipe flow, the microcapsule with a thinner shell tends to accumulate stress at a higher rate compared to that with a thicker shell. In general, for the same microcapsule configuration, higher flow velocity would induce a higher stress level over the microcapsule shell. The deformation gradient was used to capture the microcapsule's deformation in the present study. The effect of Young's modulus on the microcapsule shell on the microcapsule deformation was investigated as well. Our findings will shed light on the understanding of the stability of core–shell-structured microcapsule when subjected to flow-induced shear stress in a microfluidic system, enabling a more exquisite control over the breakup dynamics of drug-loaded microcapsule for biomedical applications.  相似文献   
2.
International Journal of Theoretical Physics - The Majorana representation, which provides an intuitive way to represent the quantum state by stars on the Bloch sphere, has drawn considerable...  相似文献   
3.
利用n维有限射影空间上的一些性质,构作了组合群验的数学模型de-析取矩阵,并研究了它的参数和Hamming距离.  相似文献   
4.
5.
Journal of Sol-Gel Science and Technology - A novel gas sensing material, La–Y co-doped TiO2 nanoparticles, was synthesized by sol–gel method and applied to detect organic pollutants...  相似文献   
6.
汪已琳  任哲  赵志然  张威 《人工晶体学报》2018,47(12):2659-2662
本文对减压扩散机理及高阻密栅技术作了详细的分析,并就设备及工艺方面的关键技术进行了阐述,最后对减压扩散高方阻工艺及密栅匹配技术电池效率进行了对比分析,有以下结论:(1)减压扩散在工艺优化后,方阻均匀性得到大幅改善,达到3;以内.(2)减压扩散电池效率完全可达到常规产线的水平,且在高阻密栅方面更有优势,可有效提升太阳电池效率.  相似文献   
7.
JPC – Journal of Planar Chromatography – Modern TLC - A new high-performance thin-layer chromatographic (HPTLC) method has been developed for the simultaneous estimation of...  相似文献   
8.
采用水热法制备花状Bi2 WO6,并利用超声分散法制备了Cu2 O/TiO2-Bi2 WO6复合光催化剂,通过FESEM、XRD、XPS、FI-IR、UV-vis DRS和PL对光催化剂进行了分析和表征.表征结果证明:花状Bi2 WO6表面负载着碎片状的TiO2和立方体Cu2 O形成Cu2 O/TiO2-Bi2 WO6复合光催化剂;以短链脂肪酸(SCFAs)为牺牲剂,考察复合光催化剂的光催化产生氢气和烷烃的性能.实验结果表明:Cu2 O/TiO2-Bi2 WO6复合光催化剂以乙酸为牺牲剂,主要产氢气和甲烷,降解率高达91.82;;以丙酸为牺牲剂,产物主要是乙烷和丁烷,降解率高达90.70;;以丁酸为牺牲剂,除了氢气,甲烷,乙烷,丙烷,丁烷外,气体产物还含有一定量的戊烷,其降解率高达91.50;.结合反应液中间产物的成分进行检测,由此推断出光催化反应的可能机理.  相似文献   
9.
10.
For the orthosymplectic Lie superalgebra ◂⋅▸OSP(2,2), we choose a set of basis matrices. A linear combination of those basis matrices presents a spatial spectral matrix. The compatible condition of the spatial part and the corresponding temporal parts of the spectral problem leads to a generalized super AKNS (GSAKNS) hierarchy. By making use of the supertrace identity, the obtained GSAKNS hierarchy can be written as the super bi-Hamiltonian structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号