全文获取类型
收费全文 | 14897篇 |
免费 | 3231篇 |
国内免费 | 5371篇 |
专业分类
化学 | 10589篇 |
晶体学 | 609篇 |
力学 | 1323篇 |
综合类 | 788篇 |
数学 | 2472篇 |
物理学 | 7718篇 |
出版年
2024年 | 47篇 |
2023年 | 143篇 |
2022年 | 512篇 |
2021年 | 478篇 |
2020年 | 523篇 |
2019年 | 536篇 |
2018年 | 507篇 |
2017年 | 690篇 |
2016年 | 490篇 |
2015年 | 809篇 |
2014年 | 875篇 |
2013年 | 1159篇 |
2012年 | 1115篇 |
2011年 | 1229篇 |
2010年 | 1312篇 |
2009年 | 1411篇 |
2008年 | 1500篇 |
2007年 | 1330篇 |
2006年 | 1331篇 |
2005年 | 1256篇 |
2004年 | 941篇 |
2003年 | 668篇 |
2002年 | 651篇 |
2001年 | 628篇 |
2000年 | 786篇 |
1999年 | 474篇 |
1998年 | 236篇 |
1997年 | 204篇 |
1996年 | 164篇 |
1995年 | 174篇 |
1994年 | 139篇 |
1993年 | 153篇 |
1992年 | 151篇 |
1991年 | 105篇 |
1990年 | 93篇 |
1989年 | 93篇 |
1988年 | 94篇 |
1987年 | 89篇 |
1986年 | 62篇 |
1985年 | 42篇 |
1984年 | 63篇 |
1983年 | 61篇 |
1982年 | 38篇 |
1981年 | 36篇 |
1980年 | 44篇 |
1979年 | 21篇 |
1978年 | 6篇 |
1977年 | 8篇 |
1971年 | 6篇 |
1959年 | 6篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
中药丹参及其近缘种中微量元素的主成分和聚类分析 总被引:4,自引:0,他引:4
采用原子吸收光谱法测定了不同产地的中药丹参及其近缘种植物白花丹参、雪山鼠尾草、云南鼠尾草、甘西鼠尾草、贵州鼠尾草、血盆草、粘毛鼠尾草、峨眉鼠尾草、黄鼠狼花、短唇鼠尾草和犬形鼠尾草中的Cu,Zn,Fe,Mg,Ca,Cr,Pb,Mo,Mn和Cd共10种微量元素的含量,应用主成分和聚类分析法对测定结果进行了研究。经过主成分分析得出3个主因子,其累计方差贡献率达79.3%。第一主因子的方差贡献率为49.6%,故所对应的Fe,Mn,Cu,Zn,Cd和Pb是丹参及其近缘种的特征元素。聚类分析将21个样品聚成2组,除浙江栽培丹参和白花丹参外,来自不同产地的9个丹参样品聚为一组;除贵州鼠尾草外,其他鼠尾草样品聚在一起,故此法可以将丹参和鼠尾草属其他植物区分开,总符合率达90%。因此利用原子吸收光谱法测定丹参及其近缘种中微量元素含量并对测定结果进行聚类分析是鉴别正品丹参的一种快速、准确的方法。 相似文献
942.
羊肉嫩度傅里叶变换近红外光谱偏最小二乘法定量分析研究 总被引:11,自引:0,他引:11
以从内蒙、宁夏、甘肃、新疆4个肉羊产区筛选的有代表性的98份羊肉样品为试材,应用傅里叶变换近红外光谱技术探讨了羊肉嫩度无损检测的方法。以模型决定系数(r2)、校正标准差(RMSECV)和预测标准差(RMSEP)为模型精度评价指标,采用偏最小二乘法(PLS)对近红外光谱信息与样品的质构仪剪切力值进行了拟合,确定了最佳的光谱预处理方法、主成分数和波段范围。结果表明:所选98个羊肉样品的剪切力值分布范围为1.673~6.631 kg,其中75%以上的样品剪切力值在2~5 kg,基本覆盖了我国现有的肉羊嫩度值分布;在11 995~5 446 cm-1和4 601~4 246 cm-1的波段范围内,最佳主成分数为10,光谱经矢量归一法处理后,建立的羊肉嫩度模型精度最高,r2达到86.2%,RMSECV为0.445;用此模型对预测集29个样品进行预测,预测值与实测值的相关系数r达到0.87,预测平均偏差为0.385,RMSEP为0.524。 相似文献
943.
使用SAC/SAC-CI方法,利用6-311 g,6-311g**及cc-PVTZ等基组,对Na2分子的基态(X1Σg )、第一激发态(A1Σu )和第二激发态(B1Πu)的平衡结构和谐振频率进行计算.通过对3个基组的计算结果的比较,得出6-311g**基组为3个基组中最优基组的结论;使用6-311g**基组,分别利用SAC的GSUM(Group Sum of Operators)方法对基态(X1Σg ),SAC-CI的GSUM方法对激发态(A1Σu )和(B1Πu)进行单点能扫描计算,用正规方程组拟合Murrell-Sorbie函数,得到相应电子态的完整势能函数.用得到的势能函数计算与基态(X1Σg ),第一激发态(A1Σu )和第二激发态(B1Πu)相对应的光谱常数(Be,αe,ωe和ωeχe),结果与实验数据基本吻合. 相似文献
944.
945.
946.
室温300K下,由于AlxGa1-xN的带隙宽度可以从GaN的3.42eV到AlN的6.2eV之间变化,所以AlxGa1-xN是紫外光探测器和深紫外LED所必需的外延材料.高质量高铝组分AlxGa1-xN材料生长的一大困难就是AlxGa1-xN与常用的蓝宝石衬底之间大的晶格失配和热失配.因而采用MOCVD在GaN/蓝宝石上生长的AlxGa1-xN薄膜由于受张应力作用非常容易发生龟裂.GaN/AlxGa1-xN超晶格插入层技术是释放应力和减少AlxGa1-xN薄膜中缺陷的有效方法.研究了GaN/AlxGa1-xN超晶格插入层对GaN/蓝宝石上AlxGa1-xN外延薄膜应变状态和缺陷密度的影响.通过拉曼散射探测声子频率从而得到材料中的残余应力是一种简便常用的方法,AlxGa1-xN外延薄膜的应变状态可通过拉曼光谱测量得到.AlxGa1-xN外延薄膜的缺陷密度通过测量X射线衍射得到.对于具有相同阱垒厚度的超晶格,例如4nm/4nm,5nm/5nm,8nm/8nm的GaN/Al0.3Ga0.7N超晶格,研究发现随着超晶格周期厚度的增加AlxGa1-xN外延薄膜缺陷密度降低,AlxGa1-xN外延薄膜处于张应变状态,且5nm/5nmGaN/Al0.3Ga0.7N超晶格插入层AlxGa1-xN外延薄膜的张应变最小.在保持5nm阱宽不变的情况下,将垒宽增大到8nm,即十个周期的5nm/8nmGaN/Al0.3Ga0.7N超晶格插入层使AlxGa1-xN外延层应变状态由张应变变为压应变.由X射线衍射结果计算了AlxGa1-xN外延薄膜的刃型位错和螺型位错密度,结果表明超晶格插入层对螺型位错和刃型位错都有一定的抑制效果.透射电镜图像表明超晶格插入层使位错发生合并、转向或是使位错终止,且5nm/8nmGaN/Al0.3Ga0.7N超晶格插入层导致AlxGa1-xN外延薄膜中的刃型位错倾斜30°左右,释放一部分压应变. 相似文献
947.
948.
949.
950.