Double the fun! Singlet–triplet dual emission at ambient temperature has been achieved in compounds containing a triarylboron acceptor and an N‐(2′‐pyridyl)‐7‐azaindolyl donor group bridged by a tetrahedral Si linker (see figure). PtII chelation and chelate‐mode switching from N,N to N,C have been found to greatly enhance phosphorescent emission. Furthermore, both singlet and triplet emission bands are responsive to fluoride ions.
The polynuclear copper(II) complex [Cu2(Hdpa)2(μ‐ClDHBQ)(ClO4)2]n, 1 is bridged by ClDHBQ?2 (2,5‐dichloro‐3,6‐dihydroxy‐1,4‐benzoquinone dianionic) and 2,2′‐dipyridylamine (Hdpa). In the axial position, Cu is connected with the oxygen atom of ClO. The perchlorate anion may be envisaged as a monodentate O‐bound ligand. Through the bond bridge of O–Cu … O–Cl, the binuclear compound [Cu2(Hdpa)2(μ‐ClDHBQ)(ClO4)2] is strung together into a long chain compound. Tetrachlorocatechol underwent partial oxidation/hydrolysis/dechlorination processes to produce ClDHBQ?2. The other mononuclear complex [Cu(Hdpa)(TeCQ)](DMF), 2 , in which tetrachloroquinone (TeCQ) was produced by oxidation of tetrachlorocatechol (TeCC), therefore complex 2 is in the quinone form. The magnetic susceptibility measurements show antiferromagnetic coupling with J = ?11.9 cm?1, θ = 2.6 K, and g = 2.05 for complex 1. Complex 2 exhibits the typical paramagnetic behavior of s = 1/2. 相似文献
Acetyl-CoA carboxylase(ACCase) is a crucial enzyme in fatty acid synthesis, by regulating the first committed step in the process. Therefore, it is a potential target for the development of new compounds against obesity or as herbicides. The cDNA encoding yeast ACCase CT domains(YCTs) from Saccharomyces cerevisiae was amplified by RT-PCR and inserted into the vector PET28a(+) for bacterial expression of YCT fused to N-terminal His-tag(YCT-his6). YCTs-his6 was expressed in Escherichia coli BL21(DE3) PLys as ... 相似文献
A new tripodal rhodamine B derivative 2 was designed and synthesized by tripodal trialdehyde and rhodamine B hydrazide for the first time. This derivative could be used as a fluorescent chemosensor for the selective and sensitive determination of copper(II) in Tris-HCl buffer and ethanol aqueous mixed media. Under the optimum conditions described herein,fluorescence enhancement at 557/577 nm was linearly related to the concentration of copper(II) in the range of 0.10 to 10.00×10-5 mol·L-1,with a corre-latio... 相似文献
Carbide‐based electrocatalysts are superior to traditional carbon‐based electrocatalysts, such as the commercial Pt/C electrocatalysts, in terms of their mass activity and stability. Herein, we report a general approach for the preparation of a nanocomposite electrocatalyst of platinum and vanadium carbide nanoparticles that are loaded onto graphitized carbon. The nanocomposite, which was prepared in a localized and controlled fashion by using an ion‐exchange process, was an effective electrocatalyst for the oxygen‐reduction reaction (ORR). Both the stability and the durability of the Pt‐VC/GC nanocomposite catalyst could be enhanced compared with the state‐of‐the‐art Pt/C. This approach can be extended to the synthesis of other metal‐carbide‐based nanocatalysts. Moreover, this straightforward synthesis of high‐performance composite nanocatalysts can be scaled up to meet the requirements for mass production. 相似文献
In contrast with their dimeric homologue, triply fused zinc porphyrin trimer–pentamer, as extra‐large π‐extended mesogens, assemble into columnar liquid crystals (LCs) when combined with 3,4,5‐tri(dodecyloxy)phenyl side groups ( 3 PZn – 5 PZn , Figure 1 ). Their LC mesophases develop over a wide temperature range, namely, 41–280 °C (on heating) for 5 PZn , and all adopt an oblique columnar geometry, typically seen in columnar LC materials involving strong mesogenic interactions. These LC materials are characterized by their wide light‐absorption windows from the entire visible region up to a near infrared (NIR) region. Such ultralow‐bandgap LC materials are chemically stable and serve as hole transporters, in which 5 PZn gives the largest charge carrier mobility (2.4×10?2 cm V?1 s?1) among the series. Despite a big dimensional difference, they coassemble without phase separation, in which the resultant LC materials display essentially no deterioration of the intrinsic conducting properties. 相似文献
Covalently linked vancomycin dimers have attracted a great deal of attention among researchers because of their enhanced antibacterial activity against vancomycin‐resistant strains. However, the lack of a clear insight into the mechanisms of action of these dimers hampers rational optimization of their antibacterial potency. Here, we describe the synthesis and antibacterial activity of novel vancomycin dimers with a constrained molecular conformation achieved by two tethers between vancomycin units. Conformational restriction is a useful strategy for studying the relationship between the molecular topology and biological activity of compounds. In this study, two vancomycin units were linked at three distinct positions of the glycopeptide (vancosamine residue (V), C terminus (C), and N terminus (N)) to form two types of novel vancomycin cyclic dimers. Active NC‐VV‐linked dimers with a stable conformation as indicated by molecular mechanics calculations selectively suppressed the peptidoglycan polymerization reaction of vancomycin‐resistant Staphylococcus aureus in vitro. In addition, double‐disk diffusion tests indicated that the antibacterial activity of these dimers against vancomycin‐resistant enterococci might arise from the inhibition of enzymes responsible for peptidoglycan polymerization. These findings provide a new insight into the biological targets of vancomycin dimers and the conformational requirements for efficient antibacterial activity against vancomycin‐resistant strains. 相似文献