首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12879篇
  免费   2308篇
  国内免费   2206篇
化学   9088篇
晶体学   248篇
力学   870篇
综合类   230篇
数学   1691篇
物理学   5266篇
  2024年   44篇
  2023年   224篇
  2022年   435篇
  2021年   430篇
  2020年   554篇
  2019年   535篇
  2018年   481篇
  2017年   461篇
  2016年   584篇
  2015年   763篇
  2014年   799篇
  2013年   1058篇
  2012年   1226篇
  2011年   1202篇
  2010年   994篇
  2009年   947篇
  2008年   1055篇
  2007年   908篇
  2006年   785篇
  2005年   691篇
  2004年   516篇
  2003年   399篇
  2002年   396篇
  2001年   319篇
  2000年   312篇
  1999年   196篇
  1998年   105篇
  1997年   102篇
  1996年   94篇
  1995年   89篇
  1994年   69篇
  1993年   72篇
  1992年   53篇
  1991年   60篇
  1990年   49篇
  1989年   35篇
  1988年   49篇
  1987年   19篇
  1986年   26篇
  1985年   16篇
  1984年   20篇
  1983年   18篇
  1982年   19篇
  1981年   11篇
  1980年   18篇
  1979年   18篇
  1978年   20篇
  1976年   8篇
  1973年   8篇
  1971年   8篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
81.
毛茛科植物贡嘎乌头 ( Aconitum liljestrandii)具有镇痛、镇静、祛风湿等功效 ,产于我国西藏东部及四川西部 [1] .我们从其块根中分得 1 8个单体 ,其中 1 6个为已知生物碱 [2 ,3] ,2个为新生物碱 [3] .本文报道新的 C19-二萜生物碱贡乌生 ( Liljestrandisine) 1的结构 .1 实验部分1 .1 仪器与试剂  Boetius微量熔点测定仪 ;Nicolet FTIR2 0 0 SXV型红外光谱仪 ,KBr压片 ;BrukerAC- E2 0 0和 Varian Unity INOVA40 0 /5 4核磁共振仪 ,溶剂为 CDCl3,TMS为内标 ;VG Autospec30 0 0型和 VG70 A型质谱仪 ;Pekin Polarimete…  相似文献   
82.
A deuteron magnetic resonance and infrared study of the water molecules in lithium formate monohydrate, LiHCOO · H2O, has been made. The quadrupole coupling constants (e2qQ/h) and asymmetry parameters (η) were found to be 198.7±0.4 and 231.3±0.6 kHz, and 0.060±0.005 and 0.097±0.003, respectively, at 25 ° C.An interpretation is given of the infrared spectra in the OH-stretching region in terms of intra- and intermolecular couplings of the water molecules. It is found that the water molecules are vibrationally distorted by their environments such that the OH-stretching modes consist of independent stretchings of the two O-H bonds.  相似文献   
83.
Generating high surface area mesoporous transition metal boride is interesting because the incorporation of boron atoms generates lattice distortions that lead to the formation of amorphous metal boride with unique properties in catalysis. Here we report the first synthesis of mesoporous cobalt boron amorphous alloy colloidal particles using a soft template-directed assembly approach. Dual reducing agents are used to precisely control the chemical reduction process of mesoporous cobalt boron nanospheres. The Earth-abundance of cobalt boride combined with the high surface area and mesoporous nanoarchitecture enables solar-energy efficient photothermal conversion of CO2 into CO compared to non-porous cobalt boron alloys and commercial cobalt catalysts.

Generating high surface area mesoporous transition metal boride is challenging but interesting because incorporation of boron atoms can generate lattice distortion to form amorphous metal boride which has unique properties in catalysis.  相似文献   
84.
Improved understanding of the effect of protein glycosylation is expected to provide the foundation for the design of protein glycoengineering strategies. In this study, we examine the impact of O-glycosylation on the binding selectivity of a model Family 1 carbohydrate-binding module (CBM), which has been shown to be one of the primary sub-domains responsible for non-productive lignin binding in multi-modular cellulases. Specifically, we examine the relationship between glycan structure and the binding specificity of the CBM to cellulose and lignin substrates. We find that the glycosylation pattern of the CBM exhibits a strong influence on the binding affinity and the selectivity between both cellulose and lignin. In addition, the large set of binding data collected allows us to examine the relationship between binding affinity and the correlation in motion between pairs of glycosylation sites. Our results suggest that glycoforms displaying highly correlated motion in their glycosylation sites tend to bind cellulose with high affinity and lignin with low affinity. Taken together, this work helps lay the groundwork for future exploitation of glycoengineering as a tool to improve the performance of industrial enzymes.

Improved understanding of the effect of protein glycosylation is expected to provide the foundation for the design of protein glycoengineering strategies.

The cell walls of terrestrial plants primarily comprise the polysaccharides cellulose, hemicellulose, and pectin, as well as the heterogeneous aromatic polymer, lignin. In nature, carbohydrates derived from plant polysaccharides provide a massive carbon and energy source for biomass-degrading fungi, bacteria, and archaea, which together are the primary organisms that recycle plant matter and are a critical component of the global carbon cycle. Across the various environments in which these microbes break down lignocellulose, a few known enzymatic and chemical systems have evolved to deconstruct polysaccharides to soluble sugars.1–6 These natural systems are, in several cases, being evaluated for industrial use to produce sugars for further conversion into renewable biofuels and chemicals.From an industrial perspective, overcoming biomass recalcitrance to cost-effectively produce soluble intermediates, including sugars for further upgrading remains the main challenge in biomass conversion. Lignin, the evolution of which in planta provided a significant advantage for terrestrial plants to mitigate microbial attack, is now widely recognized as a primary cause of biomass recalcitrance.7 Chemical and/or biological processing scenarios of lignocellulose have been evaluated8 and several approaches have been scaled to industrial biorefineries to date. Many biomass conversion technologies overcome recalcitrance by partially or wholly removing lignin from biomass using thermochemical pretreatment or fractionation. This approach enables easier polysaccharide access for carbohydrate-active enzymes and/or microbes. There are however, several biomass deconstruction approaches that employ enzymes or microbes with whole, unpretreated biomass.9,10 In most realistic biomass conversion scenarios wherein enzymes or microbes are used to depolymerize polysaccharides, native or residual lignin remains.11,12 It is important to note that lignin can bind and sequester carbohydrate-active enzymes, which in turn can affect conversion performance.13Therefore, efforts aimed at improving cellulose binding selectivity relative to lignin have emerged as major thrusts in cellulase studies.14–25 Multiple reports in the past a few years have made exciting new contributions to our collective understanding of how fungal glycoside hydrolases, which are among the most well-characterized cellulolytic enzymes given their importance to cellulosic biofuels production, bind to lignin from various pretreatments.15,17 Taken together, these studies have demonstrated that the Family 1 carbohydrate-binding modules (CBMs) often found in fungal cellulases are the most relevant sub-domains for non-productive binding to lignin,15,17,20,26 likely due to the hydrophobic face of these CBMs that is known to be also responsible for cellulose binding (Fig. 1).27Open in a separate windowFig. 1Model of glycosylated CBM binding the surface of a cellulose crystal. Glycans are shown in green with oxygen atoms in red, tyrosines known to be critical to binding shown in purple, and disulfide bonds Cys8–Cys25 and Cys19–Cys35 in yellow.Furthermore, several studies have been published recently using protein engineering of Family 1 CBMs to improve CBM binding selectivity to cellulose with respect to lignin. Of particular note, Strobel et al. screened a large library of point mutations in both the Family 1 CBM and the linker connecting the catalytic domain (CD) and CBM.21,22 These studies demonstrated that several mutations in the CBM and one in the linker led to improved cellulose binding selectivity compared to lignin. The emerging picture is that the CBM-cellulose interaction, which occurs mainly as a result of stacking between the flat, hydrophobic CBM face (which is decorated with aromatic residues) and the hydrophobic crystal face of cellulose I, is also likely the main driving force in the CBM-lignin interaction given the strong potential for aromatic–aromatic and hydrophobic interactions.Alongside amino acid changes, modification of O-glycosylation has recently emerged as a potential tool in engineering fungal CBMs, which Harrison et al. demonstrated to be O-glycosylated.28–31 In particular, we have revealed that the O-mannosylation of a Family 1 CBM of Trichoderma reesei cellobiohydrolase I (TrCel7A) can lead to significant enhancements in the binding affinity towards bacterial microcrystalline cellulose (BMCC).30,32,33 This observation, together with the fact that glycans have the potential to form both hydrophilic and hydrophobic interactions with other molecules, led us to hypothesize that glycosylation may have a unique role in the binding selectivity of Family 1 CBMs to cellulose relative to lignin and as such, glycoengineering may be exploited to improve the industrial performance of these enzymes. To test this hypothesis, in the present study, we systematically probed the effects of glycosylation on CBM binding affinity for a variety of lignocellulose-derived cellulose and lignin substrates and investigated routes to computationally predict the binding properties of different glycosylated CBMs.  相似文献   
85.
旋转输液管动力稳定性理论分析北大核心CSCD   总被引:3,自引:2,他引:1       下载免费PDF全文
基于Lagrange原理和假设模态法建立了旋转输液管的动力学模型.通过降阶升维的方法求解系统的特征值问题,并分析了旋转输液管自由振动特性.得到了不同端部集中质量和转速下,系统特征值随流速升高的演变轨迹.揭示了临界流速随系统参数的变化规律.研究发现,内部流体的流动对旋转输液管动力学特性存在显著影响.在某些参数组合下,系统低阶模态能够形成不同形式的内共振关系.预示了旋转输液管模型蕴含丰富的动力学现象.  相似文献   
86.
87.
A series ofc-axis oriented YBa2Cu3O x -films with different oxygen content were prepared by laser deposition. The oxygen contentx was determined by X-ray diffraction and by resonant Rutherford-back-scattering (RRBS) measurements. Thec-axis length in these films of YBa2Cu3O x is about 0.5% larger compared to bulk values. We describe transport measurements in magnetic fields up to 7 Tesla between room temperature andT c in samples with an oxygen content between the orthorhombic-to-tetragonal transition (x6.4) and full oxygenation (x7). The ratio /R H was investigated with respect to the two-dimensional Luttinger liquid theory and the model of the two-dimensional ionic metal. We report on deviations from the expected quadratic temperature behaviour of /R H , especially in films with high oxygen content.  相似文献   
88.
The purpose of the work presented here was to evaluate the influence of solution composition and analyte characteristics on responsiveness to analysis with negative ion electrospray ionization mass spectrometry. The responses of a series of structurally diverse acidic molecules were compared in various solvents. Response was generally observed to be higher in methanol than acetonitrile and response for all analytes was poorer when water was mixed with the organic solvent. A positive correlation between negative ion ESI-MS response and log P was observed when either acetonitrile or methanol was used as the electrospray solvent. This result was expected because analytes with significant nonpolar character should be particularly responsive to ESI-MS analysis due to their higher affinity for electrospray droplet surfaces. It was also predicted that highly acidic analytes would be most responsive to analysis with negative ion ESI-MS due to their tendency to form negative ions. However, for the analytes studied here, acidity was found not to have a consistent influence on ESI-MS response. Many of the highly acidic molecules were quite polar and, consequently, were poorly responsive. Furthermore, the deprotonated molecular ion was detected for a number of molecules with very high pKa values, which would not be expected to form negative ions in the bulk solution. Ultimately, these results indicate that acidity is not a conclusive parameter for prediction of the relative magnitudes of negative ion ESI-MS response among a diverse series of analytes. Analyte polarity does; however, appear to be useful for this purpose.  相似文献   
89.
The structure of the title compound, C15H27N2+·ClO4?, consists of a monoprotonated sparteinium cation and a perchlorate anion. The two tertiary N atoms of the cation, one perchlorate O atom and a H atom form a bifurcated hydrogen bond, the four hydrogen‐bonding atoms being nearly in the same plane.  相似文献   
90.
A detailed singlet potential energy surface(PES) of [Si,C,O,O] system including a van der Waals (vdW) comples SiO……CO2,eight isomers,and twelve transiton states is investigated by MP2 and QCISD(T) (single-point)methods.At the final QCISD(T)/6-311 G(2df)//MP2/6-311G(d) level with zero-point energy included,the complex SiO……CO is found to be thermodynamically and kinetically the most stable species.Although eight ismoers are located as local energy minima,they are rather unstable toward isomerization to the dissociation fragments or comples.For the reaction of silocon atoms with carbon dioxide,two competitive reaction channels are found,and the primary pathway,which leads to the products of SiO and CO fragments,is the direct oxygen-abstraction process from carbon dioxide by silicon atom with a41.16 kJ/mol reaction barrier height.Our predications are in good agreement with previous experimental and theoretical studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号