首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   785篇
  免费   28篇
  国内免费   22篇
化学   681篇
晶体学   1篇
力学   7篇
综合类   1篇
数学   39篇
物理学   106篇
  2024年   5篇
  2023年   16篇
  2022年   25篇
  2021年   14篇
  2020年   11篇
  2019年   3篇
  2018年   6篇
  2017年   5篇
  2016年   6篇
  2015年   3篇
  2014年   7篇
  2013年   7篇
  2012年   102篇
  2011年   103篇
  2010年   26篇
  2009年   6篇
  2008年   64篇
  2007年   65篇
  2006年   77篇
  2005年   50篇
  2004年   38篇
  2003年   35篇
  2002年   27篇
  2001年   22篇
  2000年   17篇
  1999年   26篇
  1998年   22篇
  1996年   6篇
  1995年   6篇
  1994年   6篇
  1993年   7篇
  1992年   6篇
  1991年   3篇
  1990年   7篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
排序方式: 共有835条查询结果,搜索用时 296 毫秒
61.
Yu BY  Kuo CH  Wang WB  Yen GJ  Iida S  Chen SZ  Lin WC  Lee SH  Kao WL  Liu CY  Chang HY  You YW  Chang CJ  Liu CP  Jou JH  Shyue JJ 《The Analyst》2011,136(4):716-723
The nanostructure of the light emissive layer (EL) of polymer light emitting diodes (PLEDs) was investigated using force modulation microscopy (FMM) and scanning time-of-flight secondary ion mass spectrometry (ToF-SIMS) excited with focused Bi(3)(2+) primary beam. Three-dimensional nanostructures were reconstructed from high resolution ToF-SIMS images acquired with different C(60)(+) sputtering times. The observed nanostructure is related to the efficiency of the PLED. In poly(9-vinyl-carbazole) (PVK) based EL, a high processing temperature (60 °C) yielded less nanoscale phase separation than a low processing temperature (30 °C). This nanostructure can be further suppressed by replacing the host polymer with poly[oxy(3-(9H-9-carbazol-9-ilmethyl-2-methyltrimethylene)] (SL74) and poly[3-(carbazol-9-ylmethyl)-3-methyloxetane] (RS12), which have similar chemical structures and energy levels as PVK. The device efficiency increases when the phase separation inside the EL is suppressed. While the spontaneous formation of a bicontinuous nanostructure inside the active layer is known to provide a path for charge carrier transportation and to be the key to highly efficient polymeric solar cells, these nanostructures are less efficient for trapping the carrier inside the EL and thus lower the power conversion efficiency of the PLED devices.  相似文献   
62.
BiSbO(4) nanoplates with a large BET specific area has been prepared successfully via a facile hydrothermal reaction from Sb(2)O(3) and Bi(NO(3))(3). The effects of reaction conditions and the precursors on the final products were investigated. It is proposed that the redox reaction between Sb(2)O(3) and Bi(NO(3))(3) plays a pivotal role in the formation of nanocrystalline BiSbO(4). The hydrothermally prepared nanocrystalline BiSbO(4) was characterized by X-ray diffraction (XRD), N(2)-sorption BET surface area, UV-vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The DRS result clarifies that BiSbO(4), originally believed to be a visible light responsive photocatalyst, is indeed UV light responsive with a band gap of 3.5 eV. The existence of Bi containing an impurity may be responsible for the visible light response of BiSbO(4) prepared via a conventional solid state reaction. BiSbO(4) nanoplates prepared via the hydrothermal method showed superior photocatalytic performance for the degradation of benzene and 4-chlorophenol (4-CP) as compared to BiSbO(4) prepared via a solid state reaction and Degussa P25. BiSbO(4(Hy)) nanoplates can be a promising photocatalyst in the treatment of environmental pollution.  相似文献   
63.
A new phosphorescent zinc sensor (ZIrF) was constructed, based on an Ir(III) complex bearing two 2-(2,4-difluorophenyl)pyridine (dfppy) cyclometalating ligands and a neutral 1,10-phenanthroline (phen) ligand. A zinc-specific di(2-picolyl)amine (DPA) receptor was introduced at the 4-position of the phen ligand via a methylene linker. The cationic Ir(III) complex exhibited dual phosphorescence bands in CH(3)CN solutions originating from blue and yellow emission of the dfppy and phen ligands, respectively. Zinc coordination selectively enhanced the latter, affording a phosphorescence ratiometric response. Electrochemical techniques, quantum chemical calculations, and steady-state and femtosecond spectroscopy were employed to establish a photophysical mechanism for this phosphorescence response. The studies revealed that zinc coordination perturbs nonemissive processes of photoinduced electron transfer and intraligand charge-transfer transition occurring between DPA and phen. ZIrF can detect zinc ions in a reversible and selective manner in buffered solution (pH 7.0, 25 mM PIPES) with K(d) = 11 nM and pK(a) = 4.16. Enhanced signal-to-noise ratios were achieved by time-gated acquisition of long-lived phosphorescence signals. The sensor was applied to image biological free zinc ions in live A549 cells by confocal laser scanning microscopy. A fluorescence lifetime imaging microscope detected an increase in photoluminescence lifetime for zinc-treated A549 cells as compared to controls. ZIrF is the first successful phosphorescent sensor that detects zinc ions in biological samples.  相似文献   
64.
A simple and rapid solution-phase synthesis of dendritic gold nanostructures with hyperbranched architecture is demonstrated in this report. Further investigations revealed that the morphology of the synthesized sample depended on proper parameters such as reagent concentration, reaction temperature, reagent addition sequence and stir. Moreover, the dendritic gold nanostructures exhibited a good electrocatalytic activity toward methanol electro-oxidation. When compared with sea-urchinlike and flowerlike gold nanostructures which were prepared by varying the parameters of experiment, dendritic gold nanostructures showed the highest surface-enhanced Raman scattering (SERS) sensitivity using 4-aminothiophenol (4-ATP) as probe molecules. The dendritic gold nanostructures may find potential applications in catalysis, SERS and biosensor.  相似文献   
65.
The energetics and kinetics of the thermal decomposition of pentacene oxyradicals were studied using a combination of ab initio electronic structure theory and energy-transfer master equation modeling. The rate coefficients of pentacene oxyradical decomposition were computed for the range of 1500-2500 K and 0.01-10 atm and found to be both temperature and pressure dependent. The computational results reveal that oxyradicals with oxygen attached to the inner rings are kinetically more stable than those with oxygen attached to the outer rings. The latter decompose to produce CO at rates comparable to those of phenoxy radical, while CO is unlikely to be produced from oxyradicals with oxygen bonded to the inner rings.  相似文献   
66.
Although continuous low-dose (metronomic [MET]) therapy exerts anti-cancer efficacy in various cancer models, the effect of long-term MET therapy for hepatocellular carcinoma (HCC) remains unknown. This study assessed the long-term efficacy of MET on suppression of tumor growth and spontaneous metastasis in a rat model of HCC induced by administration of diethylnitrosamine for 16 wk. The rats were divided into 3 groups: MTD group received intraperitoneal (i.p.) injections of 40 mg/kg cyclophosphamide on days 1, 3, and 5 of a 21-day cycle; Control and MET groups received i.p. injections of saline and 20 mg/kg cyclophosphamide twice a week, respectively. Anti-tumor and anti-angiogenic effects and anti-metastatic mechanisms including matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) were evaluated. Twelve wk of MET therapy resulted in a significant reduction in intrahepatic tumors than control or MTD therapy. The MET group had fewer proliferating cell nuclear antigen-positive cells and decreased hypoxia-inducible factor-1α levels and microvessel density. Lung metastases were detected in 100%, 80%, and 42.9% in the control, MTD, and MET groups, respectively. MET therapy significantly decreased expression of TIMP-1, MMP-2 and -9. For mediators of pro-MMP-2 activation, MET therapy induced significant suppression in the TIMP-2 and MMP-14 level. The survival in the MET group was significantly prolonged compared to the control and MTD groups. Long-term MET scheduling suppresses tumor growth and metastasis via its potent anti-angiogenic properties and a decrease in MMPs and TIMPs activities. These results provide a rationale for long-term MET dosing in future clinical trials of HCC treatment.  相似文献   
67.
Lattice distortion in AgPt nanoparticles was studied using X-ray diffraction and other techniques. These nanoparticles show high catalytic activity in the reduction of p-nitrophenol and had a turn over frequency of 5.4 × 10(2) s(-1).  相似文献   
68.
A tandem NHC-catalyzed aza-benzoin/Michael reaction has been developed as a method to efficiently produce dihydroindenones and pyrrolidinone-containing tricycles. The novel reaction pattern involves tert-butyl aryl(tosyl)methylcarbamates reacting as both electrophile and nucleophile on the same carbon.  相似文献   
69.
Four proteoglycans were sequentially extracted from Hypsizygus marmoreus using 0.1 M NaOH (alkali-soluble proteoglycans [F1] and alkali-insoluble proteoglycans [F3]) and 0.1 M HCl (acid-soluble proteoglycans [F2] and acid-insoluble proteoglycans [F4]), and their structures and immunomodulatory activities were investigated. The proteoglycans were found to contain carbohydrates (19.8-82.4%) with various amounts of proteins (7.7-67.3%), and glucose was the major monosaccharide unit present, along with trace amounts of galactose. The molecular weights (Mw) and the radius of gyration (Rg) of these proteoglycans showed ranges of 16 × 10(4)-19,545 × 10(4) g/mol and 35-148 nm, respectively, showing significant variations in their molecular conformations. The backbones of F1 and F2 were mainly connected through a-(1→3), (1→4) and b-(1→6)-glycosidic linkages with some branches. The F1 and F2 proteoglycans significantly stimulated Raw264.7 cells to release nitric oxide (NO), prostaglandin E2 (PGE(2)) and various cytokines, such as IL-1β, TNF-α and IL-6 by inducing their mRNA expressions.  相似文献   
70.
The photoluminescence properties and energy transfer of the Eu(2+) and Mn(2+) co-doped Sr(3)Y(PO(4))(3) phosphors are investigated in detail. Two main emission bands attributed to the Eu(2+) and Mn(2+) ions are observed under UV light excitation via an efficient energy transfer process. When the Eu(2+) doping content is fixed, the emission chromaticity can be varied by simply adjusting the content of Mn(2+). The study of the behavior as a function of doping concentration indicates that the warm white-light can be obtained in a single host lattice. Furthermore, the analysis of the fluorescence decay curves based on the Inokuti-Hirayama theoretical model reveals that the dipole-quadrupole interaction is mainly responsible for the energy transfer mechanism from the Eu(2+) to Mn(2+) ions in the Sr(3)Y(PO(4))(3) phosphor. The developed phosphor exhibits a strong absorption in UV spectral region and white-light emission which may find utility as a single-component white-light-emitting UV-convertible phosphor in white LED devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号