全文获取类型
收费全文 | 324篇 |
免费 | 116篇 |
国内免费 | 89篇 |
专业分类
化学 | 148篇 |
晶体学 | 13篇 |
力学 | 43篇 |
综合类 | 28篇 |
数学 | 80篇 |
物理学 | 217篇 |
出版年
2024年 | 3篇 |
2023年 | 19篇 |
2022年 | 20篇 |
2021年 | 17篇 |
2020年 | 13篇 |
2019年 | 11篇 |
2018年 | 16篇 |
2017年 | 16篇 |
2016年 | 11篇 |
2015年 | 11篇 |
2014年 | 26篇 |
2013年 | 25篇 |
2012年 | 29篇 |
2011年 | 21篇 |
2010年 | 28篇 |
2009年 | 30篇 |
2008年 | 28篇 |
2007年 | 20篇 |
2006年 | 23篇 |
2005年 | 9篇 |
2004年 | 15篇 |
2003年 | 16篇 |
2002年 | 9篇 |
2001年 | 4篇 |
2000年 | 10篇 |
1999年 | 5篇 |
1998年 | 7篇 |
1997年 | 5篇 |
1996年 | 2篇 |
1995年 | 4篇 |
1994年 | 8篇 |
1993年 | 4篇 |
1992年 | 2篇 |
1990年 | 1篇 |
1989年 | 4篇 |
1988年 | 3篇 |
1987年 | 5篇 |
1986年 | 9篇 |
1985年 | 12篇 |
1984年 | 5篇 |
1983年 | 4篇 |
1982年 | 3篇 |
1981年 | 4篇 |
1980年 | 6篇 |
1979年 | 1篇 |
1978年 | 2篇 |
1976年 | 1篇 |
1975年 | 1篇 |
1962年 | 1篇 |
排序方式: 共有529条查询结果,搜索用时 15 毫秒
151.
甲醇汽油是一种清洁能源,甲醇汽油中甲醇的含量决定了汽油的性能。通过中红外光谱对甲醇汽油中甲醇含量进行定量检测和分析。首先,对采集的甲醇汽油原始中红外光谱进行平滑处理(smoothing)、多元散射校正(MSC)、基线校正(baseline)、归一化(normalization)等预处理,再建立PLS模型,对比选择最佳预处理方法,结果表明:在多元散射校正(MSC)处理后建立的PLS模型效果最好,模型的预测集相关系数r为0.918,预测均方根误差RMSEP为2.107。为进一步简化模型,提高预测精度,采用无信息变量消除(uninformative variable elimination, UVE)方法对波长进行筛选,将UVE波段筛选之后的作为模型的输入变量,采用偏最小二乘法(partial least squares, PLS)、主成分回归(principal components regression, PCR)和最小二乘支持向量机(least square support vector machine, LSSVM)三种方法分别建立甲醇汽油中甲醇含量的定量预测模型,并比较不同模型的预测效果和结果。结果表明,使用无信息变量消除可以较好提高数据的运算速度,其中,UVE-PLS模型建模效果最好,r和RMSEP分别为0.923和2.075。该实验表明中红外光谱检测甲醇汽油中甲醇含量是可行的并可以得到较好的效果;UVE是一种对甲醇汽油的中红外光谱非常有效的波段筛选方法,该模型的建立对石油化工领域具有较为重要的意义。 相似文献
152.
水果新鲜度是反映水果是否新鲜、饱满的重要品质指标,为了探讨水果不同货架期的预测和判别方法,以酥梨为研究对象,利用高光谱成像技术,结合偏最小二乘判别法(PLS-DA)和偏最小二乘支持向量机(LS-SVM)算法对酥梨货架期进行判别。由光源、成像光谱仪、电控位移平台和计算机等构成的高光谱成像装置采集样品光谱,装置光源采用额定功率为200 W四个溴钨灯泡成梯形结构设计,光谱范围为1 000~2 500 nm,分别率为10 nm。选取优质酥梨30个,货架期设置为1, 5和10 d,对30个样品完成3次光谱图像的采集,并矫正原始图像。实验结果表明:基于图像的酥梨货架期定性分析时,对不同货架期样品的原始图像进行PCA压缩,得到三种不同货架期的权重系数数据,PC1图像提取特征波长点为1 280,1 390,1 800,1 880和2 300 nm,以特征图像的平均灰度值作为自变量且以货架期作为因变量建立定性判别模型,建模集68个,预测集22个。最小二乘支持向量机以RBF为核函数时,预测集中样品的误判个数为1,误判率为4.5%。而当采用lin核函数时,样品的误判个数为0,误判率为0。PLS-DA定性分析时RMSEC为1.24,Rc为0.93。RMSEP为1,Rp为0.96,预测集误判率为0。特征图像对酥梨货架期判别LS-SVM中的lin核函数所建立的模型结果较好,优于RBF核函数的建模效果,也优于PLS-DA判别模型。ENVI软件提取实验样品光谱后建立LS-SVM和PLS-DA判别模型,LS-SVM利用RBF和lin核函数误判率分别为4.5%和0。与RBF核函数相比,lin核函数所建立的模型预测酥梨货架期的效果更好。PLS-DA方法主成分因子数为12,RMSEC和RMSEP分别为0.48和0.78,Rc和Rp分别为0.99和0.97,建模集与预测集的误判率均为零。LS-SVM中的lin核函数所建立的模型结果较好,依然优于PLS所建立的检测模型。酥梨的光谱信息结合LS-SVM可以实现对酥梨货架期的检测和判别。基于图像建立酥梨的货架期预测模型与光谱相比,都实现了酥梨货架期的判别,而特征图像法,选择区域较少流失部分信息,计算量小,建模结果相对略差。酥梨货架期的高光谱成像检测模型研究为消费者正确评价水果新鲜度提供了理论指导, 也为后期果水果货架期检测仪器的开发提供了技术支持。 相似文献
153.
面粉(小麦粉)是中国北方大部分地区的主食,苯甲酸是重要的酸型食品防腐剂,为了便于食品长期保存,往往会添加苯甲酸以便延长食品保存时间。但食用添加苯甲酸过量的小麦粉会对身体健康产生严重危害。太赫兹技术是一种新兴的检测技术,由于处于特殊的0.1~10 THz的太赫兹频段,在食品安全检测方面体现出了很强的应用潜力。主要致力于探索太赫兹光谱技术检测苯甲酸的合理性、可行性,利用太赫兹时域光谱技术对面粉中的食品添加剂苯甲酸进行实验研究。实验获取了面粉和苯甲酸的太赫兹时域光谱和频域光谱,其吸收系数显示苯甲酸的特征吸收峰在1.94 THz波段,面粉的太赫兹吸收系数几乎以一定的斜率增加,说明可以用THz-TDS(Terahertz time domain spectrum)技术对面粉中的苯甲酸进行特征识别。为建立面粉中添加剂苯甲酸的定量检测模型,实验获取了面粉中掺杂不同百分比(质量分数)苯甲酸的太赫兹时域光谱,计算得到吸收系数谱。实验发现吸收峰幅度的变化是与苯甲酸的含量成正比的,苯甲酸含量增加吸收峰幅度变大。首先探索了不同光谱预处理方法对太赫兹光谱的影响,采用如平滑校正、多元散射校正、基线校正和归一化等方法对原始光谱进行校正处理。校正之后,建立相应的PLS (partial least squares)模型以选择最优预处理方法。然后分别建立苯甲酸浓度和太赫兹吸收系数的MLR (multiple linear regression)、PLS和LS-SVM(partial least squares support vector machines)回归模型,并对比分析不同模型的优劣。将光谱数据归一化后建立的PLS模型更具有优势,预测相关系数Rp为0.979,预测均方根误差RMSEP为1.30%。LS-SVM与PLS和MLR模型相比,LS-SVM模型可以获得更好的建模结果,LS-SVM的预测相关系数Rp为0.987,预测均方根误差RMSEP为1.10%。利用MLR方法仅使用1.946和1.869 THz两个波段点进行建模,建模效果预测相关系数Rp为0.955,预测均方根误差RMSEP为1.90%。通过该研究为面粉中苯甲酸添加剂的无损检测提供了新的解决方案,也为其他类型的添加剂的检测提供了方法指导,对促进面粉行业的健康发展具有重要的意义。 相似文献
154.
155.
156.
在许多工程问题中,热-力耦合是重要的,而不能加以忽略.核反应堆工程就是这样的一个例子.本文讨论非线性连续介质的热-力耦合系统中的裂纹传播问题.各种的非线性介质,包括非线性弹性、弹塑性介质,被加以考虑,并且给出了相应情况下的各种路径无关积分.为了解释这些积分的物理含义,通过考虑一个缺口试件的裂纹传播,证明热-力耦合系统中的动力裂纹扩展力就等于这一路径无关积分.因此,就可利用这些积分来构作热-力耦合系统断裂动力学的非线性断裂准则. 相似文献
157.
158.
Ionospheric vertical total electron content prediction model in low-latitude regions based on long short-term memory neural network 下载免费PDF全文
Tong-Bao Zhang 《中国物理 B》2022,31(8):80701-080701
Ionosphere delay is one of the main sources of noise affecting global navigation satellite systems, operation of radio detection and ranging systems and very-long-baseline-interferometry. One of the most important and common methods to reduce this phase delay is to establish accurate nowcasting and forecasting ionospheric total electron content models. For forecasting models, compared to mid-to-high latitudes, at low latitudes, an active ionosphere leads to extreme differences between long-term prediction models and the actual state of the ionosphere. To solve the problem of low accuracy for long-term prediction models at low latitudes, this article provides a low-latitude, long-term ionospheric prediction model based on a multi-input-multi-output, long-short-term memory neural network. To verify the feasibility of the model, we first made predictions of the vertical total electron content data 24 and 48 hours in advance for each day of July 2020 and then compared both the predictions corresponding to a given day, for all days. Furthermore, in the model modification part, we selected historical data from June 2020 for the validation set, determined a large offset from the results that were predicted to be active, and used the ratio of the mean absolute error of the detected results to that of the predicted results as a correction coefficient to modify our multi-input-multi-output long short-term memory model. The average root mean square error of the 24-hour-advance predictions of our modified model was 4.4 TECU, which was lower and better than 5.1 TECU of the multi-input-multi-output, long short-term memory model and 5.9 TECU of the IRI-2016 model. 相似文献
159.
160.