首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   3篇
化学   31篇
力学   5篇
数学   5篇
物理学   11篇
  2022年   2篇
  2021年   5篇
  2020年   3篇
  2019年   4篇
  2018年   2篇
  2017年   5篇
  2016年   4篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2011年   8篇
  2010年   4篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2003年   1篇
排序方式: 共有52条查询结果,搜索用时 328 毫秒
31.
An isoparametric 3D electromechanical hexahedral finite element integrating a 3D phenomenological ferroelectric and ferroelastic constitutive law for domain switching effects is proposed. The model presents two internal variables which are the ferroelectric polarization (related to the electric field) and the ferroelastic strain (related to the mechanical stress). An implicit integration technique of the constitutive equations based on the return-mapping algorithm is developed. The mechanical strain tensor and the electric field vector are expressed in a curvilinear coordinate system in order to handle the transverse isotropy behavior of ferroelectric ceramics. The hexahedral finite element is implemented into the commercial finite element code Abaqus® via the subroutine user element. Some linear (piezoelectric) and non linear (ferroelectric and ferroelastic) benchmarks are considered as validation tests.  相似文献   
32.
In this work, a nonlocal phenomenological behavior model is proposed in order to describe the localization and propagation of stress-induced martensite transformation in shape memory alloy (SMA) wires and thin films. It is a nonlocal extension of an existing local model that was derived from a micromechanical-inspired Gibbs free energy expression. The proposed model uses, besides the local field of the internal variable, namely the martensite volume fraction, a nonlocal counterpart. This latter acts as an additional degree of freedom, which is determined by solving an additional partial differential equation (PDE), derived so as to be equivalent to the integral definition of a nonlocal quantity. This PDE involves an internal length parameter, dictating the global scale at which the nonlocal interactions of the underlying micromechanisms are manifested during phase transformation. Moreover, to account for the unstable softening behavior, the transformation yield force parameter is considered as a gradually decreasing function of the martensite fraction. Possible material and geometric imperfections that are responsible for localization initiation are also considered in this analysis. The obtained constitutive equations are implemented in the Abaqus® finite element code in one and two dimensions. This requires the development of specific finite elements having the nonlocal volume fraction variable as an additional degree of freedom. This implementation is achieved through the UEL user’s subroutine. The effect of martensitic localization on the superelastic global behavior of SMA wire and holed thin plate, subjected to tension loading, is analyzed. Numerical results show that the developed tool correctly captures the commonly observed unstable superelastic behavior characterized by nucleation and propagation of martensitic phase. In particular, they show the influence of the internal length parameter, appearing in the nonlocal model, on the size of the localization area and the stress nucleation peak.  相似文献   
33.
Most of the actual orthopaedic devices, widely made of titanium and its alloys, present different weaknesses like ions release and risks of loosening over a long period. To solve such problems, new developments in surface modification are crucial. This work is an extension of our recent effort on the development and improvement of a multifunctional inorganic/organic bilayers coating. A thin tantalum oxide layer is formed by sol–gel synthesis followed by the modification with organophosphonic acids of the tantalum oxide layer. We focus in particular on the effect of the bilayers coating on corrosion resistance and hydroxyapatite growth rate by immersion in a simulated body fluid solution. It is also highlighted that the structure of the organophosphonic acid is of major importance on the osteoinduction character of the material.  相似文献   
34.
Here, the effects of localization and propagation of martensitic phase transformation on the response of SMA thin structures subjected to thermo-mechanical loadings are investigated using nonlocal constitutive model in conjunction with finite element method. The governing equations are derived based on variational principle considering thermo-mechanical equilibrium and the spatial distribution of the nonlocal volume fraction of martensite during transformation. The nonlocal volume fraction of martensite is defined as a weighted average of the local volume fraction of martensite over a domain characterized by an internal length parameter. The local version of the thermo-mechanical behavior model derived from micromechanics considers the local volume fraction of martensite and the mean transformation strain. A 4-noded quadrilateral plane stress element with three degrees of freedom per node accounting for in-plane displacements and the nonlocal volume fraction of martensite is developed. Numerical simulations are conducted to bring out the influence of material and geometrical heterogeneities (perturbations/defects) on the localization and propagation of phase transformation in SMA thin structures. Also, a sensitivity analysis of the material response due to the localization and the other related model parameters is carried out. The detailed investigation done here clearly shows that the localization of phase transformation has significant effect on the response of shape memory alloys.  相似文献   
35.
A multicomponent Hantzsch synthesis of 1,4-dihydropyridines and acridinediones from commercially available aldehydes, ammonium acetate, and ethyl acetoacetate or dimedone, in the presence of salicylic acid as an efficient catalyst, in good yield and short reaction time is reported.

[Supplementary materials are available for this article. Go to the publisher's online edition of Synthetic Communications® for the following free supplemental resource(s): Full experimental and spectral details.]  相似文献   

36.
We consider a Euler–Bernoulli beam equation with a boundary control condition of fractional derivative type. We study stability of the system using the semigroup theory of linear operators and a result obtained by Borichev and Tomilov. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
37.
The resolution of α-alkyl-α-hydroxymethylcyclopentanones 1 and cyclohexanones 3 has been efficiently achieved by using lipase-catalyzed transesterification reactions with vinyl acetate as the acylating agent. The enantiomeric selectivities were dependent on both the ring size of the cycloalkanone and the bulk of the carbon group located at the stereogenic quaternary center. The resolved α-alkyl-α-hydroxymethylcyclopentanones 1 were used as enantiopure (or enantioenriched) precursors for the synthesis of the optically active pseudoiridolactones 67.  相似文献   
38.
New formulations capable to enhance piroxicam (PRX) water solubility and at the same time to control and adjust its release have been developed. For this purpose, two methods have been used and combined to achieve this goal, namely complexation and microencapsulation by O/W emulsion solvent evaporation. In order to modify the drug release, first, microparticles composed of pure PRX and ethylcellulose (EC) or mixtures of EC and hydroxypropylmethylcellulose (HPMC) were prepared, and then, other micropaticles containing the β-cyclodextrin/piroxicam (β-CD/PRX) complex obtained by the solvent evaporation technique and EC or a mixture of EC and HPMC were produced and tested. These formulations were characterized by FT-IR, XRD, optical microscopy, and SEM methods. Drug dissolution tests were carried out in acidic media at pH = 1.2 and 37°C. Depending on the microparticles composition, their size (d10) ranged between 49 μ.m and 121 μ.m and PRXloaded varied from 10.8 % to 27.7 %. The effect of complexation and HPMC polymer on the drug release was investigated; the results demonstrated that the Higuchi’s release constant significantly increased when using the EC/HPMC mixture as a matrix with pure PRX or only EC as a matrix with the β-CD/PRX complex. The results are remarkably promising since the combination of these processes provided new SD-CR formulations of piroxicam which enabled simultaneous enhancement and control of its release from the carriers.  相似文献   
39.
We investigate the near-threshold formation of negative ions as Regge resonances in electron-atom scattering, with specific results obtained for e--K, e--Rb, and e--Cs. The complex angular momentum method, implemented within the Mulholland formulation of the total elastic cross sections, is employed. We demonstrate that for e--K, e--Rb, and e--Cs scattering, the near-threshold electron attachment cross sections are characterized by the Wigner threshold behavior, Ramsauer-Townsend minima, and Regge resonances, all discernible only through Regge partial cross section scrutiny. Regge partial, differential, and total elastic cross sections are presented and contrasted, as well as the differential cross section critical minima.  相似文献   
40.
This study investigated the chemical composition, antioxidant and antimicrobial activity of essential oil extracted from Artemisia aragonensis Lam. (EOA). Hydrodistillation was employed to extract EOA. Gas chromatography with flame ionization detection (GC-FID) and gas chromatography-mass spectrometry analyses (GC-MS) were used to determine the phytochemical composition of EOA. Antioxidant potential was examined in vitro by use of three tests: 2.2-diphenyl-1-picrilhidrazil (DPPH), ferric reducing activity power (FRAP) and total antioxidant capacity assay (TAC). Agar diffusion and microdilution bioassays were used to assess antimicrobial activity. GC/MS and GC-FID detected 34 constituents in the studied EOA. The major component was Camphor (24.97%) followed by Borneol (13.20%), 1,8 Cineol (10.88%), and Artemisia alcohol (10.20%). EOA exhibited significant antioxidant activity as measured by DPPH and FRAP assays, with IC50 and EC50 values of 0.034 ± 0.004 and 0.118 ± 0.008 mg/mL, respectively. EOA exhibited total antioxidant capacity of 7.299 ± 1.774 mg EAA/g. EOA exhibited potent antibacterial activity as judged by the low minimum inhibitory concentration (MIC) values against selected clinically-important pathogenic bacteria. MIC values of 6.568 ± 1.033, 5.971 ± 1.033, 7.164 ± 0.0 and 5.375 ± 0.0 μg/mL were observed against S. aureus, B. subtills, E. coli 97 and E. coli 57, respectively. EOA displayed significant antifungal activity against four strains of fungi: F. oxysporum, C. albicans, A. flavus and A. niger with values of 21.50 ± 0.43, 5.31 ± 0.10, 21.50 ± 0.46 and 5.30 ± 0.036 μg/mL, respectively. The results of the current study highlight the importance of EOA as an alternative source of natural antioxidant and antibacterial drugs to combat antibiotic-resistant microbes and free radicals implicated in the inflammatory responses accompanying microbial infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号