首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27869篇
  免费   4893篇
  国内免费   2838篇
化学   18449篇
晶体学   267篇
力学   2011篇
综合类   217篇
数学   3475篇
物理学   11181篇
  2024年   222篇
  2023年   633篇
  2022年   1105篇
  2021年   1113篇
  2020年   1140篇
  2019年   1048篇
  2018年   975篇
  2017年   923篇
  2016年   1345篇
  2015年   1310篇
  2014年   1544篇
  2013年   2065篇
  2012年   2428篇
  2011年   2447篇
  2010年   1640篇
  2009年   1598篇
  2008年   1745篇
  2007年   1497篇
  2006年   1376篇
  2005年   1168篇
  2004年   879篇
  2003年   695篇
  2002年   618篇
  2001年   521篇
  2000年   521篇
  1999年   627篇
  1998年   529篇
  1997年   522篇
  1996年   488篇
  1995年   464篇
  1994年   385篇
  1993年   345篇
  1992年   285篇
  1991年   251篇
  1990年   239篇
  1989年   195篇
  1988年   152篇
  1987年   134篇
  1986年   98篇
  1985年   103篇
  1984年   66篇
  1983年   55篇
  1982年   53篇
  1981年   23篇
  1980年   13篇
  1979年   5篇
  1965年   1篇
  1959年   2篇
  1957年   7篇
  1936年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
In this work, novel selective recognition materials, namely magnetic molecularly imprinted polymers (MMIPs), were prepared. The recognition materials were used as pretreatment materials for magnetic molecularly imprinted solid-phase extraction (MSPE) to achieve the efficient adsorption, selective recognition, and rapid magnetic separation of methotrexate (MTX) in the patients’ plasma. This method was combined with high-performance liquid chromatography–ultraviolet detection (HPLC–UV) to achieve accurate and rapid detection of the plasma MTX concentration, providing a new method for the clinical detection and monitoring of the MTX concentration. The MMIPs for the selective adsorption of MTX were prepared by the sol–gel method. The materials were characterized by transmission electron microscopy, Fourier transform-infrared spectrometry, X-ray diffractometry, and X-ray photoelectron spectrometry. The MTX adsorption properties of the MMIPs were evaluated using static, dynamic, and selective adsorption experiments. On this basis, the extraction conditions were optimized systematically. The adsorption capacity of MMIPs for MTX was 39.56 mgg−1, the imprinting factor was 9.40, and the adsorption equilibrium time was 60 min. The optimal extraction conditions were as follows: the amount of MMIP was 100 mg, the loading time was 120 min, the leachate was 8:2 (v/v) water–methanol, the eluent was 4:1 (v/v) methanol–acetic acid, and the elution time was 60 min. MTX was linear in the range of 0.00005–0.25 mg mL−1, and the detection limit was 12.51 ng mL−1. The accuracy of the MSPE–HPLC–UV method for MTX detection was excellent, and the result was consistent with that of a drug concentration analyzer.  相似文献   
72.
Protosappanoside D (PTD) is a new component isolated from the extract of Caesalpinia decapetala for the first time. Its structure was identified as protosappanin B-3-O-β-D-glucoside by 1H-NMR, 13C-NMR, 2D-NMR and MS techniques. To date, the pharmacological activities, metabolism or pharmacokinetics of PTD has not been reported. Therefore, this research to study the anti-inflammatory activity of PTD was investigated via the LPS-induced RAW264.7 cells model. At the same time, we also used the UHPLC/Q Exactive Plus MS and UPLC-MS/MS methods to study the metabolites and pharmacokinetics of PTD, to calculate its bioavailability for the first time. The results showed that PTD could downregulate secretion of the pro-inflammatory cytokines. In the metabolic study, four metabolites were identified, and the primary degradative pathways in vivo involved the desaturation, oxidation, methylation, alkylation, dehydration, degradation and desugarization. In the pharmacokinetic study, PTD and its main metabolite protosappanin B (PTB) were measured after oral and intravenous administration. After oral administration of PTD, its Tmax was 0.49 h, t1/2z and MRT(0–t) were 3.47 ± 0.78 h and 3.06 ± 0.63 h, respectively. It shows that PTD was quickly absorbed into plasma and it may be eliminated quickly in the body, and its bioavailability is about 0.65%.  相似文献   
73.
The monolayer Janus MoSSe is considered to be a promising catalytic material due to its unique asymmetric structure. In order to improve its catalytic performance for hydrogen evolution reactions (HERs) and oxygen evolution reactions (OERs), many attempts have been made. In this work, a series of transition metal (TM) atoms were anchored on the Janus MoSSe surface to screen effective TM single-atom catalysts for HERs and OERs through density functional theory (DFT) calculations. Fe@MoSSe presents excellent HERs performance and Ni@MoSSe presents excellent catalytic performance for OERs with extremely low over-potential of 0.32 V. The enhanced activity is attributed to the modest energy level of the d band center of the transition metal atom, and the transition metal atom improves the conductivity of the original MoSSe and offers unoccupied states near the Fermi level. At the same time, the anchoring of transition metal atoms redistributes the charge in the MoSSe system, which effectively regulates the electronic structure of the material itself. The strain calculation shows that the activity of the catalyst can be improved by reasonably adjusting the value of the applied strain.  相似文献   
74.
Pure organic room-temperature phosphorescence (RTP) materials built upon noncovalent interactions have attracted much attention because of their high efficiency, long lifetime, and stimulus-responsive behavior. However, there are limited reports of noncovalent RTP materials because of the lack of specific design principles and clear mechanisms. Here, we report on a noncovalent material prepared via facile grinding that can emit fluorescence and RTP emission differing from their components’ photoluminescent behavior. Exciplex can be formed during the preparation process to act as the minimum emission unit. We found that H-bonds in the RTP system provide restriction to nonradiative transition but also enhance energy transformation and energy level degeneracy in the system. Moreover, water-stimulated photoluminescent ink is produced from the materials to achieve double-encryption application with good resolution.  相似文献   
75.
Blue-phase liquid crystal (BPLC) is considered as the next-generation liquid crystal display material, but its practical application is seriously affected by a narrow temperature range and a long research period. In this paper, we used inkjet printing technology to prepare BPLC materials with high throughput, and try to use machine vision technology to test BPLC with high throughput. The “standard curve method” for establishing each printing channel and the “vector matching method” for searching the chromaticity value of the minimum distance were proposed to improve the accuracy of inkjet printing BPLC materials. For a large number of sample-phase images, we propose a machine learning method to identify the liquid crystal phase. In this paper, for the first time, the high-throughput preparation and high-throughput detection of 1080 BPLC samples with five common components by a comprehensive experimental method has been successfully realized. The results are helpful to improve the research efficiency of blue-phase materials and provide a theoretical basis and practical guidance for rapid screening of multi-component BPLC materials.  相似文献   
76.
77.
Early cancer diagnosis is essential for successful treatment and prognosis, and modified nucleosides have attracted widespread attention as a promising group of cancer biomarkers. However, analyzing these modified nucleosides with an extremely low abundance is a great challenge, especially analyzing multiple modified nucleosides with a different abundance simultaneously. In this work, an ultrasensitive quantification method based on chemical labeling, coupled with LC-MS/MS analysis, was established for the simultaneous quantification of 5hmdC, 5fdC, 5hmdU and 5fdU. Additionally, the contents of 5mdC and canonical nucleosides could be obtained at the same time. Upon derivatization, the detection sensitivities of 5hmdC, 5fdC, 5hmdU and 5fdU were dramatically enhanced by several hundred times. The established method was further applied to the simultaneous detection of nine nucleosides with different abundances in about 2 μg genomic DNA of breast tissues from 20 breast cancer patients. The DNA consumption was less than other overall reported quantification methods, thereby providing an opportunity to monitor rare, modified nucleosides in precious samples and biology processes that could not be investigated before. The contents of 5hmdC, 5hmdU and 5fdU in tumor tissues and normal tissues adjacent to the tumor were significantly changed, indicating that these three modified nucleosides may play certain roles in the formation and development of tumors and be potential cancer biomarkers. While the detection rates of 5hmdC, 5hmdU and 5fdU alone as a biomarker for breast cancer samples were 95%, 75% and 85%, respectively, by detecting these three cancer biomarkers simultaneously, two of the three were 100% consistent with the overall trend. Therefore, simultaneous detection of multiple cancer biomarkers in clinical samples greatly improved the accuracy of cancer diagnosis, indicating that our method has great application potential in clinical multidimensional diagnosis.  相似文献   
78.
Cantharidin (CTD) is the major component of anticancer drugs obtained from Mylabris Cichorii and has a good inhibitory effect on several cancers, including hepatocellular carcinoma (HCC) and breast cancer. However, due to its toxicity, oral administration can cause various adverse reactions, limiting its clinical application. The aim of this work was to design glycyrrhetinic acid (GA)- and/or folate (FA)-modified solid lipid nanoparticles (SLNs) for the encapsulation of CTD to target HCC. Four CTD-loaded SLNs (cantharidin solid lipid nanoparticles (CSLNs), glycyrrhetinic acid-modified cantharidin solid lipid nanoparticles (GA-CSLNs), folate-modified cantharidin solid lipid nanoparticles (FA-CSLNs), and glycyrrhetinic acid and folate-modified cantharidin solid lipid nanoparticles (GA-FA-CSLNs)) were prepared by the emulsion ultrasonic dispersion method, and their physicochemical parameters were determined (particle size and distribution, morphology, zeta-potential, entrapment efficiency, drug loading, and hemolysis). Additionally, the antitumor activities of the four SLNs were evaluated comprehensively by tests for cytotoxicity, cell migration, cell cycle, apoptosis, cellular uptake, competition suppression assay, and in vivo tumor suppression assay. Four SLNs showed spherical shapes and mean diameters in the range of 75–110 nm with size dispersion (PDI) within the range of 0.19–0.50 and zeta-potential approximately –10 mV. The entrapment efficiency of CTD in SLNs was higher than 95% for all tested formulations, and no hemolysis was observed. Compared to GA-CSLNs or CSLNs, GA-FA-CSLNs and FA-CSLNs showed stronger cytotoxicity on hepatocellular carcinoma cells (HepG2), and the cytotoxicity of GA-FA-CSLNs on hepatocyte cells (L-02) was remarkably reduced compared with other formulations. GA-FA-CSLNs and FA-CSLNs also increased the inhibition of HepG2 cell migration, and FA-CSLNs had the highest apoptosis rate. The cell cycle results indicated that HepG2 cells were arrested mainly in the S phase and G2/M phase. Analysis of competition inhibition experiments showed that GA and FA ligands had targeted effects on HepG2 cells. The in vivo tumor inhibition experiment showed that GA-FA-CSLNs and FA-CSLNs had excellent tumor inhibition ability—their tumor inhibition rates were 96.46% and 89.92%, respectively. Our results indicate that GA-FA-CSLNs and FA-CSLNs have a promising future in the therapeutic intervention of HCC.  相似文献   
79.
In this work, polyacrylonitrile/aminated polymeric nanosphere (PAN/APN) nanofibers were prepared by electrospinning of monodispersed aminated polymeric nanospheres (APNs) for removal of Cr(VI) from aqueous solution. Characterization results showed that obtained PAN/APNs possessed nitrogen functionalization. Furthermore, the adsorption application results indicated that PAN/APN nanofibers exhibited a high adsorption capacity of 556 mg/g at 298 K for Cr(VI) removal. The kinetic data showed that the adsorption process fits the pseudo-second order. A thermodynamic study revealed that the adsorption of Cr(VI) was spontaneous and endothermic. The coexisting ions Na+, Ca2+, K+, Cl, NO3 and PO43− had little influence on Cr(VI) adsorption, while SO42− in solution dramatically decreased the removal performance. In the investigation of the removal mechanism, relative results indicated that the adsorption behavior possibly involved electrostatic adsorption, redox reaction and chelation. PAN/APN nanofibers can detoxify Cr(VI) to Cr(III) and subsequently chelate Cr(III) on its surface. The unique structure and nitrogen functionalization of PAN/APN nanofibers make them novel and prospective candidates in heavy metal removal.  相似文献   
80.
To reveal the nature of CO2 reduction to formate with high efficiency by in situ hydrogen produced from hydrothermal reactions with iron, DFT calculations were used. A reaction pathway was proposed in which the formate was produced through the key intermediate species, namely iron hydride, produced in situ in the process of hydrogen gas production. In the in situ hydrogenation of CO2, the charge of H in the iron hydride was −0.135, and the Fe–H bond distance was approximately 1.537 Å. A C-H bond was formed as a transition state during the attack of Hδ− on Cδ+. Finally, a HCOO species was formed. The distance of the C-H bond was 1.107 Å. The calculated free energy barrier was 16.43 kcal/mol. This study may provide new insight into CO2 reduction to formate in hydrothermal reactions with metal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号