首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   222篇
  免费   11篇
  国内免费   4篇
化学   152篇
力学   10篇
数学   22篇
物理学   53篇
  2024年   2篇
  2023年   5篇
  2022年   10篇
  2021年   13篇
  2020年   9篇
  2019年   10篇
  2018年   10篇
  2017年   5篇
  2016年   9篇
  2015年   7篇
  2014年   16篇
  2013年   15篇
  2012年   13篇
  2011年   11篇
  2010年   12篇
  2009年   9篇
  2008年   11篇
  2007年   8篇
  2006年   5篇
  2005年   6篇
  2004年   3篇
  2003年   5篇
  2002年   7篇
  2001年   5篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1996年   1篇
  1995年   4篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1980年   2篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1974年   1篇
  1973年   1篇
  1967年   1篇
排序方式: 共有237条查询结果,搜索用时 203 毫秒
131.
Experiments measuring the solubility of kaolin particles in terms of the concentration of aluminum and silicon ions in supernatant were carried out as a function of the pH of the slurry over a wide range of dosages of different dispersing agents varying from 0.5 to 12 mg/(g solids). The concentrations of the metal ions in supernatant were found to be strongly affected by the type and the dosage of the dispersants and pH of the solution. In this study, the mechanism of the reaction between the dispersing agents and kaolin particles was studied and the dissolution capacities of metal ions (aluminum and silicon) were identified from kaolin particles in the absence and presence of dispersing agents. The three anionic dispersing agents used were sodium polyacrylate (Na-PAA), sodium hexametaphosphate (Na-HMP), and sodium silicate (Na-silicate), based on the industrial application of these agents and their ability to produce a stable dispersion for this purpose.  相似文献   
132.
The bimolecular rate constants for reaction of imidazole with phenyl acetates complexed with sodium dodecyl sulfate (SDS) or cetyltrimethylammonium bromide (CTAB) micelles obey Bronsted equations with beta 1g similar to that of the reaction in aqueous solution. The dissociation constants of ester (Ks) and the hypothetical dissociation constant (KTS) of the transition state of the micelle complexes obey Hansch equations with similar sensitivities (p) to pi (-0.66 and -0.589 for KS and -0.735 and -0.495 for KTS, respectively). The slopes also indicate that the microsolvation environments associated with the transition state and the complexed ester have aqueous character. The relative values of KTS and KS indicate that the transition state of the reaction of imidazole with ester is more weakly complexed to both micelles than is the reactant ester. Log KTS values are linear functions of log KS for reactions with both CTAB and SDS; the slopes are, respectively, -0.893 and -1.19 consistent with a slightly more "water-like" medium for the transition state than for the site of binding of ester with CTAB-micelle and slightly less for the SDS-micelle. The results for ester and transition state are consistent with the location of the phenyl residue in a hydrophobic region that possesses water molecules. It is concluded that the acetyl group in the complexed transition state is located in an aqueous part of the Stern region, whereas the phenyl residue is in a part of the Stern region that possesses alkane components. The derived kinetic and complexation parameters in these experiments refer to micelles with Stern regions that have been maintained at constant ionic compositions.  相似文献   
133.
[structure: see text] The crystalline donor-acceptor hydrogen-bonding complexes between 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone (chloranilic acid) and dipyridylacetylenes (DPA) [2,2'-DPA, 3,3'-DPA, and 4,4'-DPA] were prepared, and crystal structures were revealed by X-ray analysis. The structures of the complexes are formed by intermolecular hydrogen-bonding interactions and demonstrate three supramolecular architectures based on a new common supramolecular synthon, which allows the formation of a different stacking arrangement and ionicity.  相似文献   
134.
Symmetries of spacetime manifolds which are given by Killing vectors are compared with the symmetries of a Lagrangian constructed from a Weyl re-scaled metric used in discussing disorder operators in Gauge theories. We find the point generators of the one parameter Lie groups of transformations that leave invariant the action integral corresponding to the Lagrangian (Noether symmetries). It is shown that the Noether symmetries obtained by considering the Lagrangian provide additional symmetries which are not provided by the Killing vectors. New conservation law/s are determined.  相似文献   
135.
Background: The red-complex bacteria are one of the most significant complexes found simultaneously in subgingival plaque next to the periodontal pocket. The current antibacterial treatment is not adequate, and multidrug resistance to it is developing. Henceforth, the antibacterial effect of the ethanolic extract of Nepeta deflersiana was put to test against red-complex bacteria in patients with chronic periodontitis. Methods: Well diffusion and micro broth dilution procedure by Alamar blue were applied to assess the zone of inhibition (ZOI), the minimum inhibitory concentration (MIC), and the minimum bactericidal concentration (MBC). Anti-virulence efficacies of the plant extract that comprise of adherence and formation of biofilms were examined by the process of adherence and biofilm production assay. Results: The crude extract of Nepeta deflersiana exhibited significant inhibitory outcome against periodontopathic bacteria with noteworthy MIC (0.78–3.12 mg/mL), inhibitory zone (12–20 mm), as well as MBC (3.12–12.50 mg/mL). The N. deflersiana extract inhibited bacterial adhesion ranging from 41% to 52%, 53% to 66%, and 60% to 79% at the given MIC × 0.5, MIC × 1, and MIC × 2 in succession. Substantial suppression was also developed in the biofilm production of the investigated periodontopathic strains following exposure to numerous concentrations of N. deflersianan extract for a period of 24 and 48 h. Conclusion: These outcomes divulge a new concept that N. deflersiana extract can be utilized to manufacture valuable antibacterial compounds to treat chronic and acute periodontitis. This identifies N. deflersiana as an essential natural source for future drug development.  相似文献   
136.
Alkene is an attractive substrate for chemists due to its easy availability and reactivity towards large number of reactants affording diverse range of organic compounds. It reacts under ionic and free radical mechanisms including single electron transfer (SET). In this review, strategies used for C–C and C-heteroatom functionalization of alkene has been discussed with emphasis on the regio, stereoselectivity, mechanistic detail and sustainability aspects. These strategies mainly follow the free radical mechanism, and the highly reactive carbon radicals show uncontrollable regio- and stereoselectivities. Thus these strategies still need to be focused; especially in the asymmetric versions. The regio- and stereoselectivities of functionalization of alkenes have been highlighted and debated. In addition, the hazardous reagents such as Cl2, Br2 I2, CO, peroxides, and benzene have also been discussed with the emphasis on their impact on the environment. Their plausible green alternatives have also been suggested, such as MX as halogen replacement; CO surrogates (formaldehyde etc.); sustainable aromatic solvents as benzene replacement. The non-green strategies relying on pre-formed silyl hydride and their green alternative strategies such as transfer hydrogenations have also been indicated. The applications of the functionalization of alkenes for the total synthesis of bioactive compounds have also been discussed in detail. In addition, future perspectives are also highlighted for further developments in the functionalization of alkenes.  相似文献   
137.
The recent coronavirus disease 2019 (COVID-19) pandemic is a global threat for healthcare management and the economic system, and effective treatments against the pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus responsible for this disease have not yet progressed beyond the developmental phases. As drug refinement and vaccine progression require enormously broad investments of time, alternative strategies are urgently needed. In this study, we examined phytochemicals extracted from Avicennia officinalis and evaluated their potential effects against the main protease of SARS-CoV-2. The antioxidant activities of A. officinalis leaf and fruit extracts at 150 µg/mL were 95.97% and 92.48%, respectively. Furthermore, both extracts displayed low cytotoxicity levels against Artemia salina. The gas chromatography–mass spectroscopy analysis confirmed the identifies of 75 phytochemicals from both extracts, and four potent compounds, triacontane, hexacosane, methyl linoleate, and methyl palminoleate, had binding free energy values of −6.75, −6.7, −6.3, and −6.3 Kcal/mol, respectively, in complexes with the SARS-CoV-2 main protease. The active residues Cys145, Met165, Glu166, Gln189, and Arg188 in the main protease formed non-bonded interactions with the screened compounds. The root-mean-square difference (RMSD), root-mean-square fluctuations (RMSF), radius of gyration (Rg), solvent-accessible surface area (SASA), and hydrogen bond data from a molecular dynamics simulation study confirmed the docked complexes′ binding rigidity in the atomistic simulated environment. However, this study′s findings require in vitro and in vivo validation to ensure the possible inhibitory effects and pharmacological efficacy of the identified compounds.  相似文献   
138.
Iron oxide@Poly(Glycidylmethacrylate‐methyl methacrylate‐divinyl benzene) magnetic composite core shell microspheres Fe3O4@P(GMA‐MMA‐DVB) with epoxy group on the surface was designed and synthesized by solvothermal process followed by distillation polymerization. The surface epoxy group was modified with amino group of ethylene diamine (EDA) to prepare Fe3O4@P(GMA‐MMA‐DVB)/NH2 microspheres, and then effects of modification on the structure, interfacial behavior and hence demulsification of the amino modified epoxy coating were examined. The prepared magnetic microspheres were characterized using a laser particle size analyzer, transmission electron microscopy, Fourier transform infrared spectroscopy, vibrating sample magnetometry, and thermogravimetric analysis. Fourier transform infrared spectrometer analysis indicates the presence of epoxy group, amino group and Fe3O4 in the final Fe3O4@P(GMA‐MMA‐DVB) and Fe3O4@P(GMA‐MMA‐DVB)/NH2 magnetic core shell microspheres. Our experimental results show that Fe3O4@P(GMA‐MMA‐DVB)/NH2 magnetic core shell microspheres exhibit good interfacial and demulsification properties and able to remove emulsified water from stable emulsion. The resulting microspheres showed excellent magnetic properties and further these can be recycled and reused by magnetic separation.  相似文献   
139.
Pauciflorol F and isopaucifloral F are very important polyphenolic natural products and exhibit a variety of biological activities such as antibiotic, anticancer, anti-HIV, antioxidant, antifungal, and anti-inflammatory activities. These important molecules have gained significant attraction of medicinal chemists and several new strategies have been developed toward the synthesis of pauciflorol F and isopaucifloral F. This review article summarizes the major synthetic approaches adopted for the synthesis of these two indanone-based compounds.  相似文献   
140.
Fagonia indica is a rich source of pharmacologically active compounds. The variation in the metabolites of interest is one of the major issues in wild plants due to different environmental factors. The addition of chemical elicitors is one of the effective strategies to trigger the biosynthetic pathways for the release of a higher quantity of bioactive compounds. Therefore, this study was designed to investigate the effects of chemical elicitors, aluminum chloride (AlCl3) and cadmium chloride (CdCl2), on the biosynthesis of secondary metabolites, biomass, and the antioxidant system in callus cultures of F. indica. Among various treatments applied, AlCl3 (0.1 mM concentration) improved the highest in biomass accumulation (fresh weight (FW): 404.72 g/L) as compared to the control (FW: 269.85 g/L). The exposure of cultures to AlCl3 (0.01 mM) enhanced the accumulation of secondary metabolites, and the total phenolic contents (TPCs: 7.74 mg/g DW) and total flavonoid contents (TFCs: 1.07 mg/g DW) were higher than those of cultures exposed to CdCl2 (0.01 mM) with content levels (TPC: 5.60 and TFC: 0.97 mg/g) as compared to the control (TPC: 4.16 and TFC: 0.42 mg/g DW). Likewise, AlCl3 and CdCl2 also promoted the free radical scavenging activity (FRSA; 89.4% and 90%, respectively) at a concentration of 0.01 mM, as compared to the control (65.48%). For instance, the quantification of metabolites via high-performance liquid chromatography (HPLC) revealed an optimum production of myricetin (1.20 mg/g), apigenin (0.83 mg/g), isorhamnetin (0.70 mg/g), and kaempferol (0.64 mg/g). Cultures grown in the presence of AlCl3 triggered higher quantities of secondary metabolites than those grown in the presence of CdCl2 (0.79, 0.74, 0.57, and 0.67 mg/g). Moreover, AlCl3 at 0.1 mM enhanced the biosynthesis of superoxide dismutase (SOD: 0.08 nM/min/mg-FW) and peroxidase enzymes (POD: 2.37 nM/min/mg-FW), while CdCl2 resulted in an SOD activity up to 0.06 nM/min/mg-FW and POD: 2.72 nM/min/mg-FW. From these results, it is clear that AlCl3 is a better elicitor in terms of a higher and uniform productivity of biomass, secondary cell products, and antioxidant enzymes compared to CdCl2 and the control. It is possible to scale the current strategy to a bioreactor for a higher productivity of metabolites of interest for various pharmaceutical industries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号