首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125726篇
  免费   7823篇
  国内免费   6164篇
化学   70081篇
晶体学   2111篇
力学   6848篇
综合类   405篇
数学   11967篇
物理学   48301篇
  2023年   828篇
  2022年   2035篇
  2021年   2181篇
  2020年   2183篇
  2019年   2231篇
  2018年   2331篇
  2017年   2250篇
  2016年   3271篇
  2015年   2952篇
  2014年   3955篇
  2013年   6833篇
  2012年   6879篇
  2011年   7854篇
  2010年   5715篇
  2009年   5823篇
  2008年   6785篇
  2007年   6156篇
  2006年   5761篇
  2005年   4883篇
  2004年   4233篇
  2003年   3654篇
  2002年   3570篇
  2001年   4952篇
  2000年   3639篇
  1999年   2785篇
  1998年   2017篇
  1997年   1925篇
  1996年   1666篇
  1995年   1488篇
  1994年   1379篇
  1993年   1193篇
  1992年   1526篇
  1991年   1500篇
  1990年   1390篇
  1989年   1218篇
  1988年   1222篇
  1987年   1245篇
  1986年   1080篇
  1985年   1347篇
  1984年   1307篇
  1983年   923篇
  1982年   949篇
  1981年   907篇
  1980年   815篇
  1979年   1035篇
  1978年   1030篇
  1977年   1052篇
  1976年   956篇
  1975年   823篇
  1974年   839篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
The crystallization behavior of a series of poly(ethylene‐co‐butylene naphthalate) (PEBN) random copolymers was studied. Wide‐angle X‐ray diffraction (WAXD) patterns showed that the crystallization of these copolymers could occur over the entire range of compositions. This resulted in the formation of poly(ethylene naphthalate) or poly(butylene naphthalate) crystals, depending on the composition of the copolymers. Sharp diffraction peaks were observed, except for 50/50 PEBN. Eutectic behavior was also observed. This showed isodimorphic cocrystallization of the PEBN copolymers. The variation of the enthalpy of fusion of the copolymers with the composition was estimated. The isothermal and nonisothermal crystallization kinetics were studied. The crystallization rates were found to decrease as the comonomer unit content increased. The tensile properties were also measured and were found to decrease as the butylene naphthalate content of the copolymers increased. For initially amorphous specimens, orientation was proved by WAXD patterns after drawing, but no crystalline reflections were observed. However, the fast crystallization of drawn specimens occurred when they were heated above the glass‐transition temperature. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 843–860, 2004  相似文献   
22.
Some microporous poly(vinylidene fluoride) (PVdF) separators for lithium‐ion batteries, used in liquid organic electrolytes based on a mixture of carbonate solvents and lithium salt LiPF6, were characterized by the study of the swelling phenomena on dense PVdF membranes. Various aspects of the kinetics of the carbonate solvents and the solvent mixture sorption in dense PVdF slabs were studied at different temperatures. Non‐Fickian behavior, characterized by S‐shaped sorption curves, was highlighted, and a salt effect, which resulted in two‐stage sorption, was studied. Diffusion coefficients and activation energies were calculated for the Fickian portions of the sorption curves, that is, at short times and low swelling ratios. A strong influence of the different interaction parameters was shown for the swelling kinetics. This study proved that the swelling of microporous PVdF membranes could be considered instantaneous. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 544–552, 2004  相似文献   
23.
Microporous poly(vinylidene fluoride) (PVdF) separators for lithium-ion batteries, used in liquid organic electrolytes, have been characterized with respect to the swelling phenomena on dense PVdF membranes (obtained through hot pressing). In the first and second parts of this study, we have described the swelling equilibria and swelling kinetics of dense PVdF. Here the thermal properties of PVdF gels and their irreversible modifications induced by swelling are characterized. Particular attention is paid to crystallinity modifications, polymer plasticization, and membrane degradation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2308–2317, 2004  相似文献   
24.
Syndiotactic polystyrene (sPS) has various crystalline forms such as α, β, γ, and δ forms, and a mesophase depending on the preparation method. In this study, we focused on the mesophase with the molecular cavity of sPS, which is obtained by step‐wise extraction of the guest molecules from the sPS δ form. To prepare the mesophase containing different shapes and sizes of the cavity, two kinds of the sPS δ form membrane cast from either toluene or chloroform solution were first prepared and then the guest molecules were removed by a step‐wise extraction method using acetone and methanol. We could succeed in the preparation of two kinds of mesophase with different shapes and sizes of the molecular cavity. Either toluene or chloroform vapor sorption to the sPS mesophase membranes was examined at 25 °C. Sorption analysis indicates that the mesophase with large molecular cavities can mainly sorb large molecules; on the other hand, the mesophase with small cavities can sorb only the small molecules, and is unable to sorb a large amount of large molecule because the cavity was too small to sorb the large molecules. Therefore, the sPS mesophase membrane has sorption selectivity based on the size of the molecular cavity. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 238–245, 2004  相似文献   
25.
According to a multiphase mixture theory, we have mathematically developed a multiphysical model with chemoelectromechanical coupling considerations, termed the multieffect‐coupling electric‐stimulus (MECe) model, to simulate the responsive behavior of electric‐sensitive hydrogels immersed in a bath solution under an externally applied electric field. For solutions of the MECe model consisting of coupled nonlinear partial differential governing equations, a meshless Hermite–Cloud method with a hierarchical iteration technique has been used for a one‐dimensional steady‐state analysis of a hydrogel strip. The computed results are compared with the experimental data, and there is very good agreement. Simulations within the domains of both hydrogels and surrounding solutions also present distributions of the ionic concentrations and electric potential as well as the hydrogel displacement. The effects of various physical parameters on the response behavior of electric‐stimulus responsive hydrogels are discussed in detail. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1514–1531, 2004  相似文献   
26.
Aiming to develop a high‐performance fiber‐reinforced rubber from styrene–butadiene rubber (SBR), we applied a special technique using electron‐beam (EB)‐irradiation‐induced graft polymerization to ultrahigh‐molecular‐weight‐polyethylene (UHMWPE) fibers. The molecular interaction between the grafted UHMWPE fibers and an SBR matrix was studied through the evaluation of the adhesive behavior of the fibers in the SBR matrix. Although UHMWPE was chemically inert, two monomers, styrene and N‐vinyl formamide (NVF), were examined for graft polymerization onto the UHMWPE fiber surface. Styrene was not effective, but NVF was graft‐polymerized onto the UHMWPE fibers with this special method. A methanol/water mixture and dioxane were used as solvents for NVF, and the effects of the solvents on the grafting percentage of NVF were also examined. The methanol/water mixture was more effective. A grafting percentage of 16.4% was the highest obtained. This improved the adhesive force threefold with respect to that of untreated UHMWPE fibers. These results demonstrated that EB irradiation enabled graft polymerization to occur even on the inert surface of UHMWPE fibers. However, the mechanical properties of the fibers could be compromised according to the dose of EB irradiation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2595–2603, 2004  相似文献   
27.
The adsorption of human serum albumin onto hydroxyapatite-modified silver electrodes has been in situ investigated by utilizing the piezoelectric quartz crystal impedance technique. The changes of equivalent circuit parameters were used to interpret the adsorption process. A kinetic model of two consecutive steps was derived to describe the process and compared with a first-order kinetic model by using residual analysis. The experimental data of frequency shift fitted to the model and kinetics parameters, k1, k2, psi1, psi2 and qr, were obtained. All fitted results were in reasonable agreement with the corresponding experimental results. Two adsorption constants (7.19 kJ mol(-1) and 22.89 kJ mol(-1)) were calculated according to the Arrhenius formula.  相似文献   
28.
Double-diffusive convection due to a cylindrical source submerged in a salt-stratified solution is numerically investigated in this study. For proper simulation of the vortex generated around the cylinder, a computational domain with irregular shape is employed. Flow conditions depend strongly on the thermal Rayleigh number, Ra T , and the buoyancy ratio, R ρ. There are two types of onset of instability existing in the flow field. Both types are due to either the interaction of the upward temperature gradient and downward salinity gradient or the interaction of the lateral temperature gradient and downward salinity gradient. The onset of layer instability due to plume convection is due to the former, whereas, the onset of layer instability of layers around the cylinder is due to the latter. Both types can be found in the flow field. The transport mechanism of layers at the top of the basic plume belongs to former while that due to basic plume and layer around the cylinder are the latter. The increase in Ra T reinforces the plume convection and reduces the layer numbers generated around the cylinder for the same buoyancy ratio. For the same Ra T , the increase of R ρ suppresses the plume convection but reinforces the layers generated around the cylinder. The profiles of local Nusselt number reflects the heat transfer characteristics of plume convection and layered structure. The profiles of averaged Nusselt number are between the pure conduction and natural convection modes and the variation is due to the evolution of layers. Received on 13 September 1996  相似文献   
29.
Unique crystallization and melting behavior in poly(aryl ether ketone ketone) containing alternated terephthalic and isophthalic moieties were studied by time-resolved synchrotron x-ray methods. Recently, this material has been shown to exhibit three polymorphs (forms I, II, and III). In this work, we further investigated their distinctive thermal properties and found that form I is the dominating and the most thermally stable phase while form II is favored by fast nucleation conditions and is the least stable phase. On the other hand, form III represents a minor intermediate phase that usually coexists with form I and can be transferred from form II and to form I. Structural and morphological changes in form I have been followed by simultaneous wide-angle x-ray diffraction (WAXD)/small-angle x-ray scattering (SAXS) measurements during cold- or melt-crystallization and subsequent melting. In all cases, a larger dimensional change was found in the crystallographic a-axis than the b-axis during heating and cooling. This may be due to the greater lateral stress variation with respect to temperature along the a direction of the primary lamellae which is induced by either the formation of secondary lamellae or the preferential chain-folding direction in poly(aryl ether ketone ketone)s. During the phase transitions of form II ← III in the cold-crystallized specimen and form III ← I in the melt-crystallized samples, lamellar variables (long period, lamellar thickness, and invariant) obtained from SAXS remain almost constant. This indicates that the density distribution in the long spacing is independent of the melting in form II or III. For melt-crystallization, the corresponding changes in unit-cell dimensions and lamellar morphology during the annealing-induced low endotherm are most consistent with the argument that these changes are due to the melting of thin lamellar population. © 1995 John Wiley & Sons, Inc.  相似文献   
30.
Taking advantage of the long 13C T1 values generally encountered in solids, selective saturation and inversion of more than one resonance in 13C CP/MAS experiments can be achieved by sequentially applying several DANTE pulse sequences centered at different transmitter frequency offsets. A new selective saturation pulse sequence is introduced composed of a series of 90 degrees DANTE sequences separated by interrupted decoupling periods during which the selected resonance is destroyed. Applications of this method, including the simplification of the measurement of the principal values of the 13C chemical shift tensor under slow MAS conditions, are described. The determination of the aromaticity of coal using a relatively slow MAS rate is also described.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号