首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   466321篇
  免费   19977篇
  国内免费   11136篇
化学   245579篇
晶体学   6368篇
力学   25850篇
综合类   543篇
数学   74158篇
物理学   144936篇
  2022年   5034篇
  2021年   5972篇
  2020年   6501篇
  2019年   6628篇
  2018年   16152篇
  2017年   15731篇
  2016年   15446篇
  2015年   8593篇
  2014年   10975篇
  2013年   19790篇
  2012年   21564篇
  2011年   29912篇
  2010年   19265篇
  2009年   19160篇
  2008年   22614篇
  2007年   24240篇
  2006年   15265篇
  2005年   14433篇
  2004年   12785篇
  2003年   11724篇
  2002年   10495篇
  2001年   10298篇
  2000年   8271篇
  1999年   7063篇
  1998年   6253篇
  1997年   6056篇
  1996年   5995篇
  1995年   5269篇
  1994年   5334篇
  1993年   4721篇
  1992年   5113篇
  1991年   5040篇
  1990年   4782篇
  1989年   4372篇
  1988年   4411篇
  1987年   4200篇
  1986年   3999篇
  1985年   5060篇
  1984年   5274篇
  1983年   4314篇
  1982年   4484篇
  1981年   4367篇
  1980年   4272篇
  1979年   4275篇
  1978年   4535篇
  1977年   4460篇
  1976年   4519篇
  1975年   4152篇
  1974年   4202篇
  1973年   4360篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
Atomic force microscopy (AFM) has been used to visualize the plastic deformation mechanisms that are responsible for the yielding of semicrystalline polymers of low degree of crystallinity (<50%). Indeed, AFM, if operated in suitable conditions, is able to image both the amorphous and the crystalline phases. Polyamide 6 films have been drawn at temperatures T < 160 °C. Postmortem AFM observations show that, at yield, shear bands nucleate and propagate in the amorphous phase. They cross the crystalline lamellae and run over the whole surface of the sample. By crossing the lamellae, they form nanoblocks of uniform size. Neither the size of the nanoblocks nor the angle between the tensile axis and the shear bands can be explained in terms of crystal plasticity. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 687–701, 2004  相似文献   
42.
The compatibilization effect of polystyrene (PS)‐poly(dimethylsiloxane) (PDMS) diblock copolymer (PS‐b‐PDMS) and the effect of rheological properties of PS and PDMS on phase structure of PS/PDMS blends were investigated using a selective extraction technique and scanning electron microscopy (SEM). The dual‐phase continuity of PS/PDMS blends takes place in a wide composition range. The formation and the onset of a cocontinuous phase structure largely depend on blend composition, viscosity ratio of the constituent components, and addition of diblock copolymers. The width of the concentration region of the cocontinuous structure is narrowed with increasing the viscosity ratio of the blends and in the presence of the small amount diblock copolymers. Quiescent annealing shifts the onset values of continuity. The experimental results are compared with the volume fraction of phase inversion calculated with various theoretical models, but none of the models can account quantitatively for the observed data. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 898–913, 2004  相似文献   
43.
The viscoelastic properties of binary blends of nitrile rubber (NBR) and isotactic polypropylene (PP) of different compositions have been calculated with mean‐field theories developed by Kerner. The phase morphology and geometry have been assumed, and experimental data for the component polymers over a wide temperature range have been used. Hashin's elastic–viscoelastic analogy principle is used in applying Kerner's theory of elastic systems for viscoelastic materials, namely, polymer blends. The two theoretical models used are the discrete particle model (which assumes one component as dispersed inclusions in the matrix of the other) and the polyaggregate model (in which no matrix phase but a cocontinuous structure of the two is postulated). A solution method for the coupled equations of the polyaggregate model, considering Poisson's ratio as a complex parameter, is deduced. The viscoelastic properties are determined in terms of the small‐strain dynamic storage modulus and loss tangent with a Rheovibron DDV viscoelastometer for the blends and the component polymers. Theoretical calculations are compared with the experimental small‐strain dynamic mechanical properties of the blends and their morphological characterizations. Predictions are also compared with the experimental mechanical properties of compatibilized and dynamically cured 70/30 PP/NBR blends. The results computed with the discrete particle model with PP as the matrix compare well with the experimental results for 30/70, 70/30, and 50/50 PP/NBR blends. For 70/30 and 50/50 blends, these predictions are supported by scanning electron microscopy (SEM) investigations. However, for 30/70 blends, the predictions are not in agreement with SEM results, which reveal a cocontinuous blend of the two. Predictions of the discrete particle model are poor with NBR as the matrix for all three volume fractions. A closer agreement of the predicted results for a 70/30 PP/NBR blend and the properties of a 1% maleic anhydride modified PP or 3% phenolic‐modified PP compatibilized 70/30 PP/NBR blend in the lower temperature zone has been observed. This may be explained by improved interfacial adhesion and stable phase morphology. A mixed‐cure dynamically vulcanized system gave a better agreement with the predictions with PP as the matrix than the peroxide, sulfur, and unvulcanized systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1417–1432, 2004  相似文献   
44.
A series of polymer electrolytes based on multiarm polymers and lithium salt complexes were characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and impedance measurement. The relationships of conductivity with salt concentration, temperature, and arm numbers are discussed. It is suggested that the star polymer has a higher solvency and ion transfer ability on lithium salts than on linear polymers. The conductivity maximum appeared at a higher salt concentration ([EO]/[Li] = 4). Impedance measurement suggested that the optimum conductivity was 2 × 10?4 s · cm?1. The conductivity increased with temperature and the dependence of ionic conductivity on temperature fits the Arrhenius equation. Among the studied systems, the star polymer with a five arm number performs better than other structures. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4195–4198, 2004  相似文献   
45.
A new method for the synthesis of exfoliated graphite and polyaniline (PANI)/graphite nanocomposites was developed. Exfoliated graphite nanosheets were prepared through the microwave irradiation and sonication of synthesized expandable graphite. The nanocomposites were fabricated via the in situ polymerization of the monomer at the presence of graphite nanosheets. The as-synthesized graphite nanosheets and PANI/graphite nanocomposite materials were characterized with Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and thermogravimetric analysis (TGA). The conductivity of the PANI/graphite nanocomposites was dramatically increased over that of pure PANI. TGA indicated that the incorporation of graphite greatly improved the thermal stability of PANI. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1972–1978, 2004  相似文献   
46.
The effects of the size (pseudo‐generation number) and nature of end groups on physical and rheological properties were investigated for a series of hyperbranched polyesters based on an ethoxylated pentaerythritol core and 2,2‐bis‐(hydroxymethyl)propionic acid repeat units. The observed linear dependence of the melt viscosity on the molar mass in the high pseudo‐generation‐number limit indicated that entanglement effects were substantially absent. Moreover, the marked influence of end capping of the end groups on the physical and rheological properties suggested that intermolecular interactions were dominated by contacts between the outer shells of the molecules, in which the end groups were assumed to be concentrated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1218–1225, 2004  相似文献   
47.
Although there have been many reports on the preparation and applications of various polymer nanofibers with the electrospinning technique, the understanding of synthetic parameters in electrospinning remains limited. In this article, we investigate experimentally the influence of solvents on the morphology of the poly(vinyl pyrrolidone) (PVP) micro/nanofibers prepared by electrospinning PVP solution in different solvents, including ethanol, dichloromethane (MC) and N,N‐dimethylformamide (DMF). Using 4 wt % PVP solutions, the PVP fibers prepared from MC and DMF solvents had a shape like a bead‐on‐a‐string. In contrast, smooth PVP nanofibers were obtained with ethanol as a solvent although the size distribution of the fibers was somewhat broadened. In an effort to prepare PVP nanofibers with small diameters and narrow size distributions, we developed a strategy of using mixed solvents. The experimental results showed that when the ratio of DMF to ethanol was 50:50 (w/w), regular cylindrical PVP nanofibers with a diameter of 20 nm were successfully prepared. The formation of these thinnest nanofibers could be attributed to the combined effects of ethanol and DMF solvents that optimize the solution viscosity and charge density of the polymer jet. In addition, an interesting helical‐shaped fiber was obtained from 20 wt % PVP solution in a 50:50 (w/w) mixed ethanol/DMF solvent. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3721–3726, 2004  相似文献   
48.
The development during the last 15 years and the state-of-the-art in the analysis of bulk steroid hormone drugs and hormone-like structures and pharmaceutical formulations made thereof are summarized. Other steroids (sterols, bile acids, cardiac glycosides, vitamins D) as well as biological-clinical aspects and pharmacokinetic and metabolic studies are excluded from this review. The state-of-the-art is summarized based on comparisons of monographs in the latest editions of the European Pharmacopoeia, United States Pharmacopoeia and the Japanese Pharmacopoeia. This is followed by sections dealing with new developments in the methodology for the fields of spectroscopic and spectrophotometric, chromatographic, electrophoretic and hyphenated techniques as well electroanalytical methods. The review is terminated by two problem-oriented sections: examples on impurity and degradation profiling as well as enantiomeric analysis.  相似文献   
49.
Based on the complexation between proteins and Cu(II) coupled with the time-resolved chemiluminescence (CL) technique, a highly sensitive and quantitative assay for measuring proteins in solution is described. The complexes of proteins with Cu(II) have a strongly catalytic effect on the luminol-H2O2 CL reaction. Because the CL emission produced by the complexes is much more long-lived than that by Cu(II), the CL signals originating from proteins can be easily identified and measured with a time-resolved technique. On this basis, bovine albumin fraction V (BAF V) can be quantitatively determined in the range of 0.01 - 5.0 microg/ml with a detection limit of 5.8 ng/ml. The results show that the proposed assay exhibits a small variation in the response values for the same amount of different proteins, as compared to the Lowry as well as Bradford assays. The CL assay has also been studied for the detection of immobilized proteins.  相似文献   
50.
In the present work, a new method was established by applying solid-phase extraction (SPE) to preconcentrate and separate polymeric aluminum (Al) and using ICP-AES to determine the polymeric Al, the total monomeric Al, and the total Al in soil extracts, respectively. A modified resin was prepared with impregnated 8-hydroxyquinoline-5-sulfoxinate (HQS) on the anion-exchange resin. It has good recognition ability for Al fractions, compared to the commonly used cation ion-exchange resin, which has a better ability to adsorb cations and a weak ability to recognize detailed Al species. The optimum conditions for Al fractionation sorption, elution and separation and the interference of foreign ions were studied with the prepared resin by continuous column and batch procedures. Monomeric Al was bound to Pyrocathecol Violet (PCV) at pH 6.2, whereas the polymeric Al species did not react with PCV for at least 15 min. Because a stable complex of Al-PCV was not absorbed on the HQS modified resin, the polymeric Al could be preconcentrated on-line by the HQS-modified resin. The adsorbed polymeric Al was eluted with 3 mL of 3 mol L(-1) of HCl, and then detected by ICP-AES. The method has been applied to directly determine polymeric Al in soil extracts with high selectivity as well as a high preconcentration factor. It gives a limit of detection of 0.6 ng mL(-1) with a relative standard deviation of less than 5.7% (n = 5, 0.24 microg mL(-1) Al).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号