首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2042篇
  免费   247篇
  国内免费   226篇
化学   1266篇
晶体学   34篇
力学   90篇
综合类   45篇
数学   203篇
物理学   877篇
  2024年   8篇
  2023年   35篇
  2022年   74篇
  2021年   59篇
  2020年   61篇
  2019年   89篇
  2018年   74篇
  2017年   46篇
  2016年   81篇
  2015年   69篇
  2014年   81篇
  2013年   107篇
  2012年   154篇
  2011年   148篇
  2010年   102篇
  2009年   118篇
  2008年   110篇
  2007年   97篇
  2006年   97篇
  2005年   111篇
  2004年   93篇
  2003年   73篇
  2002年   65篇
  2001年   93篇
  2000年   48篇
  1999年   55篇
  1998年   51篇
  1997年   40篇
  1996年   33篇
  1995年   36篇
  1994年   25篇
  1993年   24篇
  1992年   16篇
  1991年   16篇
  1990年   33篇
  1989年   17篇
  1988年   10篇
  1987年   8篇
  1986年   19篇
  1985年   9篇
  1984年   4篇
  1983年   4篇
  1981年   2篇
  1979年   4篇
  1978年   4篇
  1977年   2篇
  1974年   3篇
  1973年   1篇
  1959年   1篇
  1957年   1篇
排序方式: 共有2515条查询结果,搜索用时 15 毫秒
101.
In this article, we are concerned with the interactions of delta shock waves with contact discontinuities for the relativistic Euler equations for Chaplygin gas by using split delta functions method. The solutions are obtained constructively and globally when the initial data consists of three piecewise constant states. The global structure and large time‐asymptotic behaviors of the solutions are analyzed case by case. During the process of the interaction, the strengths of delta shock waves are computed completely. Moreover, it can be found that the Riemann solutions are stable for such small perturbations with special initial data by letting perturbed parameter ε tends to zero. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
102.
Novel multi‐walled carbon nanotube modified dummy‐template molecularly imprinted microspheres (MWCNTs@DMMIPs) were successfully synthesized as adsorbents for six kinds of polychlorinated biphenyls (PCBs). MWCNTs@DMMIPs were prepared by a surface molecular imprinting technique. Core–shell Fe3O4@SiO2 nanoparticles were employed as magnetic support. 3,4‐Dichlorobenzene acetic acid was used as a dummy template instead of PCBs, methacrylic acid was used as functional monomer and ethylene glycol dimethacrylate was used as the cross‐linker. The resulting absorbent was characterized by various methods. The adsorbent was employed for extracting PCBs and exhibited good selectivity and high adsorption efficiency. Furthermore, it was reusable and capable of magnetic separation. Adsorption kinetics fit well with a pseudo‐second‐order kinetic equation and also exhibited a three‐stage intra‐particle diffusion model. The Freundlich model was used to describe the adsorption isotherms. The materials were successfully applied to the magnetic dispersive solid‐phase extraction of six kinds of PCBs followed by gas chromatography with mass spectrometry determination in fish samples, the limit of detection of six kinds of PCBs were 0.0028–0.0068 μg/L and spiked recoveries ranged between 73.41 and 114.21%. The prepared adsorbent was expected to be a new material for the removal and recovery of PCBs from contaminated foods.  相似文献   
103.
Nanometer‐sized flakes of MnV2O6 were synthesized by a hydrothermal method. No surfactant, expensive metal salt, or alkali reagent was used. These MnV2O6 nanoflakes present a high discharge capacity of 768 mA h g?1 at 200 mA g?1, good rate capacity, and excellent cycling stability. Further investigation demonstrates that the nanoflake structure and the specific crystal structure make the prepared MnV2O6 a suitable material for lithium‐ion batteries.  相似文献   
104.
We report a new, effective and environmentally friendly protocol for selective aerobic oxidative coupling of arylboronic acids with carboxylic anhydrides in the presence of ligand‐free palladium catalyst. The aryl benzoates are obtained in good to excellent yields.  相似文献   
105.
106.
Separation of microparticle in viscoelastic fluid is highly required in the field of biology and clinical medicine. For instance, the separation of the target cell from blood is an important prerequisite step for the drug screening and design. The microfluidic device is an efficient way to achieve the separation of the microparticle in the viscoelastic fluid. However, the existing microfluidic methods often have some limitations, including the requirement of the long channel length, the labeling process, and the low throughput. In this work, based on the elastic-inertial effect in the viscoelastic fluid, a new separation method is proposed where a gradually contracted microchannel is designed to efficiently adjust the forces exerted on the particle, eventually achieving the high-efficiency separation of different sized particles in a short channel length and at a high throughput. In addition, the separation of WBCs and RBCs is also validated in the present device. The effect of the flow rate, the fluid property, and the channel geometry on the particle separation is systematically investigated by the experiment. With the advantage of small footprint, simple structure, high throughput, and high efficiency, the present microfluidic device could be utilized in the biological and clinical fields, such as the cell analysis and disease diagnosis.  相似文献   
107.
Characterization of the geometrical and structural characteristics of oxidized Cu area in high resolution is crucial for tracking the change in morphology, exploring interactions between graphene layers and Cu substrates and revealing the mechanism for the orientation-dependent oxidation of Cu. Here, we reported experimental results on nanoscale imaging of natural oxidation of the polycrystalline Cu substrate coated by partial-coverage chemical vapor deposition (CVD)-grown graphene stored in dryer under ambient conditions for up to 10 months. Scanning electron microscope (SEM), together with atomic force microscope (AFM), Raman, and X-ray photoelectron spectroscopy (XPS), was used for systematically studying the morphological and compositional changes at nanoscale during oxidation. The appearance of oxidized Cu substrates could be unambiguously distinguished from the unoxidized regions based on their distinctly different morphologies in SEM images, and the underlying mechanism was discussed in detail. By analyzing a millimeter-seized polycrystalline Cu substrate, we found that the oxidation of polycrystalline Cu substrate depends sensitively on both orientation of graphene layers and Cu substrates. Furthermore, the time-dependent oxidation evolution of Cu substrate was also established, and the oxidation rate was readily determined. The findings reported here will have important implications for developing protection coatings for Cu.  相似文献   
108.
WeiPing Liu  ZhiHong Li  JiangJun He  XiaoDong Tang  Gang Lian  Zhu An  JianJun Chang  Han Chen  QingHao Chen  XiongJun Chen  ZhiJun Chen  BaoQun Cui  XianChao Du  ChangBo Fu  Lin Gan  Bing Guo  GuoZhu He  Alexander Heger  SuQing Hou  HanXiong Huang  Ning Huang  BaoLu Jia  LiYang Jiang  Shigeru Kubono  JianMin Li  KuoAng Li  Tao Li  YunJu Li  Maria Lugaro  XiaoBing Luo  HongYi Ma  ShaoBo Ma  DongMing Mei  YongZhong Qian  JiuChang Qin  Jie Ren  YangPing Shen  Jun Su  LiangTing Sun  WanPeng Tan  Isao Tanihata  Shuo Wang  Peng Wang  YouBao Wang  Qi Wu  ShiWei Xu  ShengQuan Yan  LiTao Yang  Yao Yang  XiangQing Yu  Qian Yue  Sheng Zeng  HuanYu Zhang  Hui Zhang  LiYong Zhang  NingTao Zhang  QiWei Zhang  Tao Zhang  XiaoPeng Zhang  XueZhen Zhang  ZiMing Zhang  Wei Zhao  Zuo Zhao  Chao Zhou  JUNA Collaboration 《中国科学:物理学 力学 天文学(英文版)》2016,59(4):642001
Jinping Underground laboratory for Nuclear Astrophysics(JUNA) will take the advantage of the ultra-low background of CJPL lab and high current accelerator based on an ECR source and a highly sensitive detector to directly study for the first time a number of crucial reactions occurring at their relevant stellar energies during the evolution of hydrostatic stars. In its first phase, JUNA aims at the direct measurements of~(25)Mg(p,γ)~(26)Al,~(19)F(p,α)~(16)O,~(13)C(α,n)~(16)O and ~(12)C(α,γ)~(16)O reactions. The experimental setup,which includes an accelerator system with high stability and high intensity, a detector system, and a shielding material with low background, will be established during the above research. The current progress of JUNA will be given.  相似文献   
109.
A new decoupling composite pulse sequence is proposed to remove the broadening on spin S=1/2 magic-angle spinning (MAS) spectra arising from the scalar coupling with a quadrupolar nucleus I. It is illustrated on the (31)P spectrum of an aluminophosphate, AlPO(4)-14, which is broadened by the presence of (27)Al/(31)P scalar couplings. The multiple-pulse (MP) sequence has the advantage over the continuous wave (CW) irradiation to efficiently annul the scalar dephasing without reintroducing the dipolar interaction. The MP decoupling sequence is first described in a rotor-synchronised version (RS-MP) where one parameter only needs to be adjusted. It clearly avoids the dipolar recoupling in order to achieve a better resolution than using the CW sequence. In a second improved version, the MP sequence is experimentally studied in the vicinity of the perfect rotor-synchronised conditions. The linewidth at half maximum (FWHM) of 65 Hz using (27)Al CW decoupling decreases to 48 Hz with RS-MP decoupling and to 30 Hz with rotor-asynchronised MP (RA-MP) decoupling. The main phenomena are explained using both experimental results and numerical simulations.  相似文献   
110.
We present several new methods that allow to obtain through-space 2D HETCOR spectra between spin-1/2 and half-integer quadrupolar nuclei in the solid state. These methods use the rotary-resonance concept to create hetero-nuclear coherences through the dipolar interaction instead of scalar coupling into the HMQC and refocused INEPT experiments for spin n/2 (n>1). In opposite to those based on the cross-polarization transfer to quadrupolar nuclei, the methods are very robust and easy to set-up.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号