首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   3篇
  国内免费   2篇
化学   4篇
力学   22篇
物理学   13篇
  2021年   3篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   4篇
  2013年   3篇
  2012年   4篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   6篇
  2007年   4篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1996年   1篇
排序方式: 共有39条查询结果,搜索用时 31 毫秒
11.
A facile method to realize perfectly matched layers for elastic waves   总被引:1,自引:0,他引:1  
In perfectly matched layer (PML) technique, an artificial layer is introduced in the simulation of wave propagation as a boundary condition which absorbs all incident waves without any reflection. Such a layer is generally thought to be unrealizable due to its complicated material formulation. In this paper, on the basis of transformation elastodynamics and complex coordinate transformation, a novel method is proposed to design PMLs for elastic waves. By applying the conformal transformation technique, the proposed PML is formulated in terms of conventional constitutive parameters and then can be easily realized by functionally graded viscoelastic materials. We perform numerical simulations to validate the material realization and performance of this PML.  相似文献   
12.
Water striders are a type of insect with the remarkable ability to stand effortlessly and walk quickly on water. This article reports the water repellency mechanism of water strider legs. Scanning electron microscope (SEM) observations reveal the uniquely hierarchical structure on the legs, consisting of numerous oriented needle-shaped microsetae with elaborate nanogrooves. The maximal supporting force of a single leg against water surprisingly reaches up to 152 dynes, about 15 times the total body weight of this insect. We theoretically demonstrate that the cooperation of nanogroove structures on the oriented microsetae, in conjunction with the wax on the leg, renders such water repellency. This finding might be helpful in the design of innovative miniature aquatic devices and nonwetting materials.  相似文献   
13.
Although atomic stick–slip friction has been extensively studied since its first demonstration on graphite,the physical understanding of this dissipation-dominated phenomenon is still very limited. In this work, we perform molecular dynamics(MD) simulations to study the frictional behavior of a diamond tip sliding over a graphite surface. In contrast to the common wisdom, our MD results suggest that the energy barrier associated lateral sliding(known as energy corrugation) comes not only from interaction between the tip and the top layer of graphite but also from interactions among the deformed atomic layers of graphite. Due to the competition of these two subentries, friction on graphite can be tuned by controlling the relative adhesion of different interfaces.For relatively low tip-graphite adhesion, friction behaves normally and increases with increasing normal load. However,for relatively high tip-graphite adhesion, friction increases unusually with decreasing normal load leading to an effectively negative coefficient of friction, which is consistent with the recent experimental observations on chemically modified graphite. Our results provide a new insight into the physical origins of energy corrugation in atomic scale friction.  相似文献   
14.
<正>Mechanics plays a crucial role in a diversity of biological processes at different length(from molecules,cells,tissues,organs to organisms)and time scales.As a rapidly growing field across the interfaces of mechanics,biology,and medical engineering,mechanobiology aims to identify the mechanical and biological responses of cells and tissues of  相似文献   
15.
16.
Di  Youyu  Zhang  Shuai  Feng  Xi-Qiao  Li  Qunyang 《Acta Mechanica Sinica》2021,37(7):1041-1049
Acta Mechanica Sinica - Self-assembled films (SAFs) have been proposed to be a promising candidate for molecularly thin lubricants. However, the frictional performance of SAFs is sensitively...  相似文献   
17.
以乙醇胺为辅助溶剂,采用水热合成法,制备了花状、梭状和剑状的ZnO微纳米结构。采用扫描电镜(SEM)、X射线衍射(XRD)、光致发光光谱(PL)和拉曼光谱等测试手段对样品的形貌、结构、晶相等进行了表征。结果表明所有样品均为六方纤锌矿结构ZnO;其形貌和结晶度可通过改变物质的量的配比nZn2+/nOH-来调控。探讨了反应物配比对产物形貌结构的影响,乙醇胺对不同形貌ZnO的制备起到至关重要作用。以亚甲基蓝为目标降解物,采用紫外-可见吸收光谱(UV-Vis)并结合低温氮吸附-脱附比表面测试(BET),研究了花状、梭状和剑状ZnO的光催化活性。结果表明,与商用ZnO相比,制备的ZnO具有更好的光催化活性;样品催化活性与其比表面积不成正比,具有最小比表面积的花状ZnO拥有最好的光催化活性,这可能是由于其低的结晶度和特殊的花状形貌所致。  相似文献   
18.
Acta Mechanica Sinica - Collective cell migration is extensively observed in embryo development and cancer invasion. During these processes, the interactions between cells with distinct identities...  相似文献   
19.
We propose a Monte Carlo form-finding method that employs a stochastic procedure to determine equilibrium configurations of a tensegrity structure. This method does not involve complicated matrix operations or symmetry analysis, works for arbitrary initial configurations, and can handle large scale regular or irregular tensegrity structures with or without material/geometrical constraints.  相似文献   
20.
A phase field method is developed to investigate the morphological evolution of a vesicle in an electric field, taking into account coupled mechanical and electric effects such as bending, osmotic pressure, surface tension, flexoelectricity, and dielectricity of the membrane. The energy of the system is formulated in terms of a continuous phase field variable and the electric potential. The governing equations of the phase field and the electric field are solved using the Galerkin weighted residual approach. The validation and robustness of the algorithm are verified by direct comparisons of the obtained numerical solutions with relevant experimental results. The morphological evolution of an axisymmetric vesicle under an electric field is studied in detail. The results demonstrate that the present method can simulate complex morphological evolutions of vesicles under coupled mechanical–electrical fields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号