首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29359篇
  免费   1059篇
  国内免费   167篇
化学   19557篇
晶体学   279篇
力学   1005篇
综合类   1篇
数学   2699篇
物理学   7044篇
  2023年   146篇
  2022年   300篇
  2021年   526篇
  2020年   477篇
  2019年   489篇
  2018年   414篇
  2017年   392篇
  2016年   838篇
  2015年   692篇
  2014年   903篇
  2013年   1645篇
  2012年   2115篇
  2011年   2336篇
  2010年   1439篇
  2009年   1269篇
  2008年   1922篇
  2007年   1806篇
  2006年   1679篇
  2005年   1535篇
  2004年   1360篇
  2003年   1054篇
  2002年   1032篇
  2001年   715篇
  2000年   638篇
  1999年   371篇
  1998年   281篇
  1997年   312篇
  1996年   343篇
  1995年   270篇
  1994年   281篇
  1993年   283篇
  1992年   271篇
  1991年   210篇
  1990年   159篇
  1989年   146篇
  1988年   142篇
  1987年   125篇
  1986年   100篇
  1985年   171篇
  1984年   116篇
  1983年   104篇
  1982年   126篇
  1981年   92篇
  1980年   80篇
  1978年   84篇
  1977年   88篇
  1976年   99篇
  1975年   104篇
  1974年   85篇
  1973年   107篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
Eupatilin (5,7-dihydroxy-3',4',6-trimethoxy flavone) is an active ingredient of an ethanol extract of Artemisia asiatica (DA-9601) that is used in the treatment of gastritis. In vitro and in vivo metabolism of eupatilin in the rats has been studied by LC-electrospray mass spectrometry. Rat liver microsomal incubation of eupatilin in the presence of NADPH and UDPGA resulted in the formation of four metabolites (M1-M4). M1, M2, M3 and M4 were tentatively identified as 3'- or 4'-O-demethyl-eupatilin glucuronide, eupatilin glucuronide, 6-O-demethyleupatilin and 3'- or 4'-O-demethyl-eupatilin, respectively. Those metabolites from in vitro study were also characterized in bile, plasma or urine samples after an intravenous administration of eupatilin to rats. In rat bile, plasma and urine samples, eupatilin glucuronide (M2) was a major metabolite, whereas M3, M4 and M4 glucuronide (M1) were the minor metabolites.  相似文献   
982.
983.
Among the myosin superfamily, myosin VI differs from all others by a reverse directionality and a particular motility. Little structural information is available for myosin VI. It is known that it binds one calmodulin (CaM) by means of a single "IQ motif" and that myosin VI contains a specific insert located at the junction between the motor domain (MD) and the lever arm, likely to play a critical role for the unusual motility previously observed. Electrospray ionization mass spectrometry (MS) was used to determine the CaM and Ca2+ stoichiometries in several myosin VI constructs. In particular, the experimental conditions required for the observation of multiprotein/Ca2+ noncovalent assemblies are detailed for two truncated MD constructs (less than 20 kDa) and for three full MD constructs (more than 90 KDa). The specificity of the detected stoichiometries is discussed for each construct and the resolving power of Time of Flight mass spectrometry is stressed, in particular for the detection of metal ions binding to high molecular weight complexes. MS reveals a new CaM binding site for myosin VI and highlights a different behavior for the five myosin VI constructs versus Ca2+ binding. In addition to these stoichiometry based experiments, gas-phase dissociation analyses on intact complexes are described. They reveal that Ca2+ transfer between protein partners occurs during the dissociation process for one construct with a full MD. Charge-transfer and dissociation behavior has allowed to draw structural assumptions for the interaction of the MD with the CaM N-terminal lobe.  相似文献   
984.
Radiochemical measurements of239,240Pu were carried out for a total of 57 individual rain and snow samples collected at Fayetteville (36 °N, 94 °W), Arkansas, during the period between November 1984 and June 1986. The results indicate that the fallout of plutonium observed during the past three years is due, primarily, to the nuclear debris originating from the 7 February 1983 burn-up of the nuclear-powered Soviet satellite Cosmos-1402.This investigation was supported by the National Science Foundation under Grant ATM 84-07618.  相似文献   
985.
Theoretical ab initio calculations using the HF and B3LYP methods have been carried out to investigate the conformational differences of three cyclic rings, dibenzo-p-dioxin (DPD), thianthrene (THT), and selenanthrene (SET). The physical origin for the conformational preference of each molecule has been studied using the natural bond orbital (NBO) analysis. The NBO results indicate that DPD exists in a planar form due to strong electron delocalization caused by the specific orbital interaction, around the X atom. On the other hand, THT and SET exist as puckered forms with high inversion barriers due to less effective electron delocalization. The NBO analysis also shows that the conformational stabilization in DPD is caused by a more effective overlap of the orbitals, compared with the overlap of the orbitals in THT.  相似文献   
986.
Phagocytosis of serum- and IgG-opsonized zymosan (SOZ and IOZ, respectively) particles into J774A.1 macrophages induced apoptosis of the cells, accompanied by the expression of p21(WAF1), one of cyclin-dependent protein kinase (CDK) inhibitors. Furthermore, phagocytosis of SOZ and IOZ particles into macophages induced superoxide formation. Tat-superoxide dismutase (SOD), which is readily transduced into the cells using Tat-domain, protected the cells from the apoptosis induced by phagocytosis of SOZ and IOZ particles. lipopolysaccharide (LPS) /interferon-gamma (IFN-gamma) also caused the apoptosis of the cells. However, Tat-SOD could not protect the cells from LPS/IFN-gamma induced apoptosis, suggesting that apoptosis mechanisms involved are different from each other. In the present study, we determined the amounts of nitric oxide (NO) produced by SOZ, IOZ, and LPS/IFN-gamma, and found that SOZ and IOZ did not induce the generation of NO in macrophages, whereas LPS/ IFN-gamma did. The apoptosis due to phagocytosis was accompanied with the release of cytochrome c from mitochondrial membrane to cytosolic fraction. Furthermore, SOZ and IOZ induced the cleavage of procasapase-3 (35 kDa) to give rise to an active caspase-3 (20 kDa), which was blocked by Tat- SOD but not by 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO), a scavenger of NO. On the other hand, LPS/IFN-gamma caused the activation of procaspase-3, which was blocked by PTIO but not by Tat-SOD. Taken together, phagocytosis of SOZ and IOZ particles induced apoptosis through superoxide but not NO in macrophages, accompanied with the release of cytochrome c and the activation of caspase-3.  相似文献   
987.
Proton transfer in bacteriorhodopsin from the cytoplasm to the extracellular side is initiated from protonated asp96 in the cytoplasmic region toward the deprotonated Schiff base. This occurs in the transition from the photocycle late M state to the N state. To investigate this proton-transfer process, a quantum mechanics/molecular mechanics (QM/MM) model is constructed from the bacteriorhodopsin E204Q mutant crystal structure. Three residues, asp96, asp85, and thr89, as well as most of the retinal chromophore and the Schiff base link of lys216 are treated quantum mechanically and connected to the remaining classical protein through linker atom hydrogens. Structural transformation in the M state results in the formation of a water channel between the Schiff base and asp96. Since a part of this channel is lined with hydrophobic residues, there has been a question on the mechanism of proton transfer in a hydrophobic channel. Ab initio dynamics using the CHARMM/GAMESS methodology is used to simulate the transfer of the proton through a partially hydrophobic channel. Once sufficient water molecules are added to the channel to allow the formation of a single chain of waters from asp96 to the Schiff base, the transfer occurs as a fast (less than a picosecond) concerted event irrespective of the protonation state of asp85. Dynamic transfer of the proton from asp96 to the nearest water initiates the organization of a strongly bonded water chain conducive to the transfer of the proton to the Schiff base nitrogen.  相似文献   
988.
A series of β,γ‐unsaturated ketones were isomerized to their corresponding α,β‐unsaturated ketones by the introduction of DABCO in iPrOH at room temperature. The endo‐cyclic double bond (β,γ‐position) on ketone was rearranged to exo‐cyclic double bond (α,β‐position) under the reaction conditions.  相似文献   
989.
Qi L  Danielson ND  Dai Q  Lee RM 《Electrophoresis》2003,24(10):1680-1686
Cardiolipin is an important phospholipid present in the mitochondrial inner membrane. It plays a key function in mitochondrial respiration by interacting with many enzymes or cofactors related to oxidative phosphorylation complexes. We have determined the concentration of cardiolipin using on-line 10-N-nonyl acridine orange (NAO) dye interaction capillary electrophoresis (CE) and spectrophotometric detection with a sample throughput of 3 min. In addition to the presence of 0.1 mM NAO, the background electrolyte (BGE) composition has been set at 80% methanol-10% acetonitrile-10% H(2)O (all v/v) to provide both good solubility and the maximum absorbance enhancement at 497 nm for the NAO-cardiolipin complex as compared to NAO alone. Sample consumption for each injection is about 57 nL. A calibration curve is established from 0.5 microM to 0.1 mM with R (2) = 0.9912 with a detection limit of 0.05 microM for cardiolipin. In a blind study, actual mitochondrial cell membrane samples in the microL range before or after UV light exposure were analyzed using the CE method. Cardiolipin concentration decreased in the different parts of the membrane sample upon UV photolysis of the cells. Support for the theory that UV light can induce cardiolipin translocation from the inner membrane (IM) to the outer membrane (OM) was indicated by a significant percentage increase of cardiolipin (as measured by the cardiolipin in the OM as compared to the sum total in the OM and IM) from 30.7 +/- 2.4% before UV light photolysis to 38.3 +/- 2.2% after UV irradiation.  相似文献   
990.
Rate coefficients of the reaction O((3)P) + CH(3)OH in the temperature range of 835-1777 K were determined using a diaphragmless shock tube. O atoms were generated by photolysis of SO(2) with a KrF excimer laser at 248 nm or an ArF excimer laser at 193 nm; their concentrations were monitored via atomic resonance absorption excited by emission from a microwave-discharged mixture of O(2) and He. The rate coefficients determined for the temperature range can be represented by the Arrhenius equation, k(T) = (2.29 +/- 0.18) x 10(-10) exp[-(4210 +/- 100)T] cm(3) molecule(-1) s(-1); unless otherwise noted, all the listed errors represent one standard deviation in fitting. Combination of these and previous data at lower temperature shows a non-Arrhenius behavior described as the three-parameter equation, k(T) = (2.74 +/- 0.07) x 10(-18)T(2.25 +/- 0.13) exp[-(1500 +/- 90)T] cm(3)molecule(-1) s(-1). Theoretical calculations at the Becke-3-Lee-Yang-Parr (B3LYP)6-311 + G(3df,2p) level locate three transition states. Based on the energies computed with coupled clusters singles, doubles (triples) [CCSD(T)]/6-311 + G(3df,2p)B3LYP6-311 + G(3df,2p), the rate coefficients predicted with canonical variational transition state theory with small curvature tunneling corrections agree satisfactorily with the experimental observations. The branching ratios of two accessible reaction channels forming OH + CH(2)OH (1a) and OH + CH(3)O (1b) are predicted to vary strongly with temperature. At 300 K, reaction (1a) dominates, whereas reaction (1b) becomes more important than reaction (1a) above 1700 K.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号