首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106141篇
  免费   17505篇
  国内免费   10100篇
化学   71379篇
晶体学   1221篇
力学   6920篇
综合类   533篇
数学   11931篇
物理学   41762篇
  2024年   369篇
  2023年   2133篇
  2022年   3645篇
  2021年   4053篇
  2020年   4250篇
  2019年   4139篇
  2018年   3552篇
  2017年   3289篇
  2016年   5185篇
  2015年   4948篇
  2014年   6021篇
  2013年   7783篇
  2012年   9427篇
  2011年   9755篇
  2010年   6441篇
  2009年   6156篇
  2008年   6541篇
  2007年   6003篇
  2006年   5481篇
  2005年   4595篇
  2004年   3402篇
  2003年   2668篇
  2002年   2414篇
  2001年   1983篇
  2000年   1763篇
  1999年   2071篇
  1998年   1846篇
  1997年   1720篇
  1996年   1888篇
  1995年   1502篇
  1994年   1459篇
  1993年   1165篇
  1992年   1069篇
  1991年   984篇
  1990年   791篇
  1989年   564篇
  1988年   464篇
  1987年   382篇
  1986年   374篇
  1985年   318篇
  1984年   241篇
  1983年   154篇
  1982年   142篇
  1981年   106篇
  1980年   76篇
  1979年   44篇
  1978年   34篇
  1976年   36篇
  1975年   33篇
  1974年   45篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
971.
The bifurcated σ-hole···σ-hole stacking interactions between organosulfur molecules, which are key components of organic optical and electronic materials, were investigated by using a combined method of the Cambridge Structural Database search and quantum chemical calculation. Due to the geometric constraints, the binding energy of one bifurcated σ-hole···σ-hole stacking interaction is in general smaller than the sum of the binding energies of two free monofurcated σ-hole···σ-hole stacking interactions. The bifurcated σ-hole···σ-hole stacking interactions are still of the dispersion-dominated noncovalent interactions. However, in contrast to the linear monofurcated σ-hole···σ-hole stacking interaction, the contribution of the electrostatic energy to the total attractive interaction energy increases significantly and the dispersion component of the total attractive interaction energy decreases significantly for the bifurcated σ-hole···σ-hole stacking interaction. Another important finding of this study is that the low-cost spin-component scaled zeroth-order symmetry-adapted perturbation theory performs perfectly in the study of the bifurcated σ-hole···σ-hole stacking interactions. This work will provide valuable information for the design and synthesis of novel organic optical and electronic materials.  相似文献   
972.
Betulinic acid (BA) and its derivatives exhibit a variety of biological activities, especially their anti-HIV-1 activity, but generally have only modest inhibitory potency against influenza virus. The entry of influenza virus into host cells can be competitively inhibited by multivalent derivatives targeting hemagglutinin. In this study, a series of hexa-, hepta- and octavalent BA derivatives based on α-, β- and γ-cyclodextrin scaffolds, respectively, with varying lengths of flexible oligo(ethylene glycol) linkers was designed and synthesized using a microwave-assisted copper-catalyzed 1,3-dipolar cycloaddition reaction. The generated BA-cyclodextrin conjugates were tested for their in vitro activity against influenza A/WSN/33 (H1N1) virus and cytotoxicity. Among the tested compounds, 58, 80 and 82 showed slight cytotoxicity to Madin-Darby canine kidney cells with viabilities ranging from 64 to 68% at a high concentration of 100 μM. Four conjugates 51 and 69–71 showed significant inhibitory effects on influenza infection with half maximal inhibitory concentration values of 5.20, 9.82, 7.48 and 7.59 μM, respectively. The structure-activity relationships of multivalent BA-cyclodextrin conjugates were discussed, highlighting that multivalent BA derivatives may be potential antiviral agents against influenza infection.  相似文献   
973.
Low back pain (LBP) is a major musculoskeletal disorder and the socioeconomic problem with a high prevalence that mainly involves intervertebral disc (IVD) degeneration, characterized by progressive nucleus pulposus (NP) cell death and the development of an inflammatory microenvironment in NP tissue. Excessively accumulated cytosolic DNA acts as a damage-associated molecular pattern (DAMP) that is monitored by the cGAS-STING axis to trigger the immune response in many degenerative diseases. NLRP3 inflammasome-dependent pyroptosis is a type of inflammatory programmed death that promotes a chronic inflammatory response and tissue degeneration. However, the relationship between the cGAS-STING axis and NLRP3 inflammasome-induced pyroptosis in the pathogenesis of IVD degeneration remains unclear. Here, we used magnetic resonance imaging (MRI) and histopathology to demonstrate that cGAS, STING, and NLRP3 are associated with the degree of IVD degeneration. Oxidative stress induced cGAS-STING axis activation and NLRP3 inflammasome-mediated pyroptosis in a STING-dependent manner in human NP cells. Interestingly, the canonical morphological and functional characteristics of mitochondrial permeability transition pore (mPTP) opening with the cytosolic escape of mitochondrial DNA (mtDNA) were observed in human NP cells under oxidative stress. Furthermore, the administration of a specific pharmacological inhibitor of mPTP and self-mtDNA cytosolic leakage effectively reduced NLRP3 inflammasome-mediated pyroptotic NP cell death and microenvironmental inflammation in vitro and degenerative progression in a rat disc needle puncture model. Collectively, these data highlight the critical roles of the cGAS-STING-NLRP3 axis and pyroptosis in the progression of IVD degeneration and provide promising therapeutic approaches for discogenic LBP.Subject terms: Cell death, Diseases  相似文献   
974.
With the emergence of fifth-generation (5G) cellular networks, millimeter-wave (mmW) and terahertz (THz) frequencies have attracted ever-growing interest for advanced wireless applications. The traditional printed circuit board materials have become uncompetitive at such high frequencies due to their high dielectric loss and large water absorption rates. As a promising high-frequency alternative, liquid crystal polymers (LCPs) have been widely investigated for use in circuit devices, chip integration, and module packaging over the last decade due to their low loss tangent up to 1.8 THz and good hermeticity. The previous review articles have summarized the chemical properties of LCP films, flexible LCP antennas, and LCP-based antenna-in-package and system-in-package technologies for 5G applications, although these articles did not discuss synthetic LCP technologies. In addition to wireless applications, the attractive mechanical, chemical, and thermal properties of LCP films enable interesting applications in micro-electro-mechanical systems (MEMS), biomedical electronics, and microfluidics, which have not been summarized to date. Here, a comprehensive review of flexible LCP technologies covering electric circuits, antennas, integration and packaging technologies, front-end modules, MEMS, biomedical devices, and microfluidics from microwave to THz frequencies is presented for the first time, which gives a broad introduction for those outside or just entering the field and provides perspective and breadth for those who are well established in the field.  相似文献   
975.
This study describes the preparation of graphitic carbon nitride (g-C3N4), hematite (α-Fe2O3), and their g-C3N4/α-Fe2O3 heterostructure for the photocatalytic removal of methyl orange (MO) under visible light illumination. The facile hydrothermal approach was utilized for the preparation of the nanomaterials. Powder X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray (EDX), and Brunauer–Emmett–Teller (BET) were carried out to study the physiochemical and optoelectronic properties of all the synthesized photocatalysts. Based on the X-ray photoelectron spectroscopy (XPS) and UV-visible diffuse reflectance (DRS) results, an energy level diagram vs. SHE was established. The acquired results indicated that the nanocomposite exhibited a type-II heterojunction and degraded the MO dye by 97%. The degradation ability of the nanocomposite was higher than that of pristine g-C3N4 (41%) and α-Fe2O3 (30%) photocatalysts under 300 min of light irradiation. The formation of a type-II heterostructure with desirable band alignment and band edge positions for efficient interfacial charge carrier separation along with a larger specific surface area was collectively responsible for the higher photocatalytic efficiency of the g-C3N4/α-Fe2O3 nanocomposite. The mechanism of the nanocomposite was also studied through results obtained from UV-vis and XPS analyses. A reactive species trapping experiment confirmed the involvement of the superoxide radical anion (O2•−) as the key reactive oxygen species for MO removal. The degradation kinetics were also monitored, and the reaction was observed to be pseudo-first order. Moreover, the sustainability of the photocatalyst was also investigated.  相似文献   
976.
Low-grade heat energy recycling is the key technology of waste-heat utilization, which needs to be improved. Here, we use a zinc-assisted solid-state pyrolysis route to prepare zinc-guided 3D graphene (ZnG), a 3D porous graphene with the interconnected structure. The obtained ZnG, with a high specific surface area of 1817 m2·g−1 and abundant micropores and mesopores, gives a specific capacitance of 139 F·g−1 in a neutral electrolyte when used as electrode material for supercapacitors. At a high current density of 8 A·g−1, the capacitance retention is 93% after 10,000 cycles. When ZnG is used for thermally chargeable supercapacitors, the thermoelectric conversion of the low-grade heat energy is successfully realized. This work thus provides a demonstration for low-grade heat energy conversion.  相似文献   
977.
There is controversy regarding the surface enhancement of Raman scattering due to liquid Hg, and the enhancement of benzoic acid molecules adsorbed on liquid Hg has been determined to be essentially zero. However, if the noise error bar is taken into account, the maximum enhancement is estimated to be less than 30. The same enhancement was observed when the temperature was reduced in solidifying liquid Hg.  相似文献   
978.
979.
980.
In order to reduce maintenance costs and avoid safety accidents, it is of great significance to carry out fault prediction to reasonably arrange maintenance plans for rotating mechanical equipment. At present, the relevant research mainly focuses on fault diagnosis and remaining useful life (RUL) predictions, which cannot provide information on the specific health condition and fault types of rotating mechanical equipment in advance. In this paper, a novel three-stage fault prediction method is presented to realize the identification of the degradation period and the type of failure simultaneously. Firstly, based on the vibration signals from multiple sensors, a convolutional neural network (CNN) and long short-term memory (LSTM) network are combined to extract the spatiotemporal features of the degradation period and fault type by means of the cross-entropy loss function. Then, to predict the degradation trend and the type of failure, the attention-bidirectional (Bi)-LSTM network is used as the regression model to predict the future trend of features. Furthermore, the predicted features are given to the support vector classification (SVC) model to identify the specific degradation period and fault type, which can eventually realize a comprehensive fault prediction. Finally, the NSF I/UCR Center for Intelligent Maintenance Systems (IMS) dataset is used to verify the feasibility and efficiency of the proposed fault prediction method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号