首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   475篇
  免费   23篇
  国内免费   8篇
化学   315篇
晶体学   4篇
力学   31篇
数学   58篇
物理学   98篇
  2023年   6篇
  2022年   9篇
  2021年   16篇
  2020年   24篇
  2019年   23篇
  2018年   27篇
  2017年   23篇
  2016年   40篇
  2015年   23篇
  2014年   25篇
  2013年   63篇
  2012年   50篇
  2011年   40篇
  2010年   18篇
  2009年   16篇
  2008年   17篇
  2007年   13篇
  2006年   11篇
  2005年   10篇
  2004年   2篇
  2003年   4篇
  2002年   7篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1997年   1篇
  1995年   2篇
  1994年   3篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1984年   2篇
  1982年   1篇
  1980年   3篇
  1978年   2篇
  1977年   1篇
  1972年   1篇
  1969年   3篇
  1967年   1篇
  1965年   1篇
排序方式: 共有506条查询结果,搜索用时 15 毫秒
71.
Demand for long‐lasting antifouling surfaces has steered the development of accessible, novel, biocompatible and environmentally friendly materials. Inspired by lubricin (LUB), a component of mammalian synovial fluid with excellent antifouling properties, three block polymers offering stability, efficacy, and ease of use were designed. The bottlebrush‐structured polymers adsorbed strongly on silica surfaces in less than 10 minutes by a simple drop casting or online exposure method and were extremely stable in high‐salinity solutions and across a wide pH range. Antifouling properties against proteins and bacteria were evaluated with different techniques and ultralow fouling properties demonstrated. With serum albumin and lysozyme adsorption <0.2 ng cm?2, the polymers were 50 and 25 times more effective than LUB and known ultralow fouling coatings. The antifouling properties were also tested under MPa compression pressures by direct force measurements using surface forces apparatus. The findings suggest that these polymers are among the most robust and efficient antifouling agents currently known.  相似文献   
72.
Traditional anodic stripping voltammetry (ASV) involves electrodeposition (reduction) of metal ions from solution over some time scale onto a working electrode followed by stripping (oxidation) of the deposited metal in a second step, where the stripping potential and quantity of charge passed provide information about the metal identity and solution concentration, respectively. ASV has recently been extended to the analysis of metal nanoparticles (NPs), which have grown popular because of their fascinating properties tunable by size, shape, and composition. There is a need for improved methods of NP analysis, and because metal NPs can be oxidized to metal ions, ASV is a logical choice. Early studies involved metal NPs as tags for the detection of biomolecules. More recently, anodic stripping has been used to directly analyze the physical, chemical, and structural properties of metal NPs. This review highlights the stripping analysis of NP assemblies on macroelectrodes, individual NPs in solution during collisions with a microelectrode, and a single NP attached to an electrode. A surprising amount of information can be learned from this very simple, low-cost technique.  相似文献   
73.
Two novel organometallic complex of 2,2′-dimethyl-4,4′-bithiazole (dm4bt) ligand (L) with formula [Tl(dm4bt)2(NO3)(H2O)] (1) and [Tl(dm4bt)2(NO3)(DMSO)] (2) have been synthesized and structurally characterized by elemental analysis, FT-IR, 1H NMR spectra and X-ray crystallography. These complexes also display the first transoid conformation in bithiazole ligands in which C-H bond activation in bithiazole ring is observed with Tl(III) ion.  相似文献   
74.
The size, shape and controlled dispersity of nanoparticles play a vital role in determining the physical, chemical, optical and electronic properties attributing its applications in environmental, biotechnological and biomedical fields. Various physical and chemical processes have been exploited in the synthesis of several inorganic metal nanoparticles by wet and dry approaches viz., ultraviolet irradiation, aerosol technologies, lithography, laser ablation, ultrasonic fields, and photochemical reduction techniques. However, these methodologies remain expensive and involve the use of hazardous chemicals. Therefore, there is a growing concern for the development of alternative environment friendly and sustainable methods. Increasing awareness towards green chemistry and biological processes has led to a necessity to develop simple, cost-effective and eco-friendly procedures. Phototrophic eukaryotes such as plants, algae, and diatoms and heterotrophic human cell lines and some biocompatible agents have been reported to synthesize greener nanoparticles like cobalt, copper, silver, gold, bimetallic alloys, silica, palladium, platinum, iridium, magnetite and quantum dots. Owing to the diversity and sustainability, the use of phototrophic and heterotrophic eukaryotes and biocompatible agents for the synthesis of nanomaterials is yet to be fully explored. This review describes the recent advancements in the green synthesis and applications of metal nanoparticles by plants, aquatic autotrophs, human cell lines, biocompatible agents and biomolecules.  相似文献   
75.
In this work, functionalized chitosan end‐capped Ag nanoparticles (NPs) and composited with Fe3O4‐NPs was prepared as pH‐responsive controlled release carrier for gastric‐specific drug delivery. The structure of prepared material was characterized by FE‐SEM, XRD, EDS and FT‐IR analysis. The loading behavior of the progesterone onto this novel material was studied in aqueous medium at 25°C and their release was followed spectrophotometrically at 37°C in seven different buffer solutions (pH 1.2, 2.2, 3.2, 4.2, 5.2, 6.2 and 7.2) to simulate intestine and gastric media which experimental results reveal more release rate in pH 1.2 (gastric medium) with respect to other buffers. This observation is attributed to dependency of the CS‐IMBDO‐Ag‐Fe3O4‐NPs and progesterone structure with buffer pH that candidate this new material as prospective pH‐sensitive carrier for gastric‐targeted drug delivery. On the other hand, the antibacterial properties of this material against gram‐negative bacterium pseudomonas aeruginosa (PAO‐1) in agar plates was studied and accordingly based on broth micro dilution the minimum bactericidal concentration (MBC) and minimum inhibitory concentration (MIC) with respect to standard CLSI in different concentrations of CS‐IMBDO‐Ag‐Fe3O4‐NPs was calculated. The results reveal that MIC and MBC values are 50 and 1250 μg/mL, respectively. In addition, extracts of Portulaca oleracea leaves was prepared and its antibacterial activity in single and binary system with CS‐IMBDO‐Ag‐Fe3O4‐NPs as synergies effect against PAO‐1 was tested and results shown that these materials have significant synergistic effect for each other.  相似文献   
76.
Cu ( II ) supported on poly(8‐hydroxyquinoline‐p‐styrenesulfonate) (Cu ( II )@PHQSS) was prepared and fully characterized by the different techniques including fourier transform infrared spectroscopy (FT‐IR), 1H NMR, 13C NMR, thermal gravimetric analysis (TGA), differential thermal gravimetric (DTG), differential thermal analysis (DTA), scanning electron microscope (SEM) and energy dispersive X‐ray analysis (EDS). Afterward, the Cu ( II )@PHQSS as nanostructured catalyst was used as catalyst for the synthesis of hexahydroquinolines.  相似文献   
77.
The reaction of [SnMe2Cl2] with the bidentate ligand 4,7‐phenanthroline (4,7‐phen) resulted in the formation of [SnMe2Cl2 (4,7‐phen)]n ( 1a ) which is probably a polymeric chain in solution. On the other hand, the reaction of [SnEt2Cl2] with 4,7‐phen afforded the complex [Sn2Et4Cl41‐N‐4,7‐phen)2(μ‐κ2‐N,N‐4,7‐phen)] ( 1b ) which dissociates in dimethylsulfoxide solution. The reaction of [SnR2Cl2] (R = Me, Et) with 2,2′‐biquinoline (biq) yielded the complexes [SnMe2Cl22‐N,N‐biq)] ( 2a ) and [SnEt2Cl21‐N‐biq)2] ( 2b ) in the solid state. Moreover, the reaction of [SnR2Cl2] (R = Me, Et) with the tridentate ligand 4′‐(2‐furyl)‐2,2′:6′,2″‐terpyridine (ftpy) resulted in the formation of ionic penta‐ and hexa‐coordinated tin complexes [SnMe2Cl (ftpy)][SnMe2Cl3] ( 3a ) and [SnEt2Cl (ftpy)]Cl ( 3b ). The reaction of [SnMe2 (NCS)2] with ftpy afforded the hepta‐coordinated complex [SnMe2 (NCS)2(ftpy)] ( 4a ). The products were fully characterized using elemental analysis, and infrared, UV–visible, multinuclear (1H, 13C, 119Sn) NMR, DEPT‐135°, HH‐COSY and HSQC NMR spectroscopies. The crystal structure of complex 3a reveals that it contains the simultaneous presence of penta‐ and hexa‐coordinated tin (IV) atoms. Notably, the crystal structure of complex 4a shows that tin (IV) is hepta‐coordinated in a pentagonal bipyramidal geometry SnC2N5 by three nitrogen atoms of ftpy, two nitrogen atoms of NCS? and two Me groups with trans‐[SnMe2] configuration. These data indicate the influence of halide or pseudo‐halide group on the coordination number and geometry of tin. Hirshfeld surface analysis and two‐dimensional fingerprint plots were calculated for 3a and 4a which show the π–π interaction between molecules in the solid is relatively weak.  相似文献   
78.
In this research high-quality zinc oxide (ZnO) nanowires have been synthesized by thermal oxidation of metallic Zn thin films. Metallic Zn films with thicknesses of 250 nm have been deposited on a glass substrate by the PVD technique. The deposited zinc thin films were oxidized in air at various temperatures ranging between 450 °C to 650 °C. Surface morphology, structural and optical properties of the ZnO nanowires were examined by scanning electron microscope (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) and photoluminescence (PL) measurements. XRD analysis demonstrated that the ZnO nanowires has a wurtzite structure with orientation of (002), and the nanowires prepared at 600 °C has a better crystalline quality than samples prepared at other temperatures. SEM results indicate that by increasing the oxidation temperature, the dimensions of the ZnO nanowires increase. The optimum temperature for synthesizing high density, ZnO nanowires was determined to be 600 °C. EDX results revealed that only Zn and O are present in the samples, indicating a pure ZnO composition. The PL spectra of as-synthesized nanowires exhibited a strong UV emission and a relatively weak green emission.  相似文献   
79.
In this work mean activity coefficient measurements for KCl in the KCl + formamide + water system, using the potentiometric method, are reported. The electromotive force measurements were performed on a galvanic cell of the type Ag | AgCl | KCl (m), formamide (w%), H2O (1−w)% | K-ISE, in solvent mixtures containing w=(0,10,20,30, and 40)% mass percent of formamide over ionic strengths ranging from 0.0010 to 3.9578 mol⋅kg−1. Modeling of the activity coefficients of this ternary system was based on an extended Debye–Hückel equation and the Pitzer ion-interaction model. The resulting values of the mean activity coefficients, the osmotic coefficients and the excess Gibbs energy, together with Pitzer ion-interaction parameters (β (0), β (1) and C ϕ ) and Debye–Hückel parameters (a, c and d), are reported for the investigated system.  相似文献   
80.
An efficient implementation of simultaneous reverse Monte Carlo (RMC) modeling of pair distribution function (PDF) and EXAFS spectra is reported. This implementation is an extension of the technique established by Krayzman et al. [J. Appl. Cryst. 42, 867 (2009)] in the sense that it enables simultaneous real-space fitting of x-ray PDF with accurate treatment of Q-dependence of the scattering cross-sections and EXAFS with multiple photoelectron scattering included. The extension also allows for atom swaps during EXAFS fits thereby enabling modeling the effects of chemical disorder, such as migrating atoms and vacancies. Significant acceleration of EXAFS computation is achieved via discretization of effective path lengths and subsequent reduction of operation counts. The validity and accuracy of the approach is illustrated on small atomic clusters and on 5500-9000 atom models of bcc-Fe and α-Fe(2)O(3). The accuracy gains of combined simultaneous EXAFS and PDF fits are pointed out against PDF-only and EXAFS-only RMC fits. Our modeling approach may be widely used in PDF and EXAFS based investigations of disordered materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号