首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   0篇
化学   39篇
力学   2篇
数学   3篇
物理学   1篇
  2023年   2篇
  2022年   4篇
  2021年   5篇
  2020年   4篇
  2019年   3篇
  2014年   1篇
  2013年   1篇
  2012年   4篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2003年   3篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1989年   1篇
  1987年   1篇
  1983年   1篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
41.
The synthesis, characterization, and luminescent behavior of trivalent Sm, Eu, Dy, and Tb complexes of two enantiomeric, octadentate, chiral, 2-hydroxyisophthalamide ligands are reported. These complexes are highly luminescent in solution. Functionalization of the achiral parent ligand with a chiral 1-phenylethylamine substituent on the open face of the complex in close proximity to the metal center yields complexes with strong circularly polarized luminescence (CPL) activity. This appears to be the first example of a system utilizing the same ligand architecture to sensitize four different lanthanide cations and display CPL activity. The luminescence dissymmetry factor, g(lum), recorded for the Eu(III) complex is one of the highest values reported, and this is the first time the CPL effect has been demonstrated for a Sm(III) complex with a chiral ligand. The combination of high luminescence intensity with CPL activity should enable new bioanalytical applications of macromolecules in chiral environments.  相似文献   
42.
Journal of Dynamics and Differential Equations - A correction to this paper has been published: https://doi.org/10.1007/s10884-021-10016-2  相似文献   
43.
Core–shell microparticles that consist of poly(vinyl neodecanoate) (VND) crosslinked with poly(ethylene glycol dimethacrylate) (EGDMA) as the core and poly(ethylene glycol methacrylate) (PEGMA) ( = 360 or = 526 g · mol?1) as the shell have been synthesized using suspension polymerization by a conventional free radical polymerization process. Interfacial tension and stability tests show that PEGMA acts as an amphiphilic macromonomer and is located on the oil/water interface of the suspension system, thus forming an outer layer during the polymerization. Kinetic studies of the monomers' conversion of VND, EGDMA, and PEGMA have been carried out using 1H NMR spectroscopy. EGDMA and PEGMA were found to have faster reaction rates compared to VND. Moreover, scanning electron microscopy showed that the polymerization of these particles starts from the shell and finishes towards the core. Consequently, the resulting microsphere is found to have a multi‐layer structure. Biotin was covalently bound to the surface by the PEGMA hydroxy groups. Conjugation of biotin with streptavidin PE (phycoerythrin) was subsequently carried out. Confocal microscopy was used to confirm the presence of fluorescing streptavidin. The amount of avidin conjugated to the microspheres was calculated by the release of a 2‐(4‐hydroxyphenylazo)benzoic acid/avidin complex using UV/vis spectroscopy. One avidin molecule was found to occupy 7 nm2 on the surface of the microspheres.

  相似文献   

44.
This paper reports the synthesis of 28 thiazolidinedione derivatives along with their algicidal activity against microalgae causing harmful algal blooming. Among the 28 compounds tested, most showed effective algicidal activity against Heterosigma akashiwo, Chattonella marina, and Cochlodinium polykrikoides, while non-harmful algae were relatively tolerant to these thiazolidinedione derivatives. Compounds 6, 13, and 22 were the most potent against C. polykrikoides with IC50 values <0.5 μM. Among the thiazolidinedione derivatives tested, compounds 7, 13, 27, and 28 were extremely competent and selective to C. polykrikoides with IC50 values ranging from 0.1 to 2 μM, while C. marina and H. akashiwo showed an IC50 value ranging from 30 to 130 μM. These results show that some thiazolidinedione derivatives can act as potent algicides against harmful algal blooms.  相似文献   
45.
Chemical conversion of the extract of natural resources is a very attractive way to expand the chemical space to discover bioactive compounds. In order to search for new medicines to treat parasitic diseases that cause high morbidity and mortality in affected countries in the world, the ethyl acetate extract from the rhizome of Alpinia galanga (L.) has been chemically converted by epoxidation using dioxirane generated in situ. The biological activity of chemically converted extract (CCE) of A. galanga (L.) significantly increased the activity against Leishmania major up to 82.6 ± 6.2 % at 25 μg/mL (whereas 2.7 ± 0.8% for the original extract). By bioassay-guided fractionation, new phenylpropanoids (1–6) and four known compounds, hydroquinone (7), 4-hydroxy(4-hydroxyphenyl)methoxy)benzaldehyde (8), isocoumarin cis 4-hydroxymelein (9), and (2S,3S,6R,7R,9S,10S)-humulene triepoxide (10) were isolated from CCE. The structures of isolated compounds were determined by spectroscopic analyses of 1D and 2D NMR, IR, and MS spectra. The most active compound was hydroquinone (7) with IC50 = 0.37 ± 1.37 μg/mL as a substantial active principle of CCE. In addition, the new phenylpropanoid 2 (IC50 = 27.8 ± 0.34 μg/mL) also showed significant activity against L. major compared to the positive control miltefosine (IC50 = 7.47 ± 0.3 μg/mL). The activities of the isolated compounds were also evaluated against Plasmodium falciparum, Trypanosoma brucei gambisense and Trypanosoma brucei rhodeisense. Interestingly, compound 2 was selectively active against trypanosomes with potent activity. To the best of our knowledge, this is the first report on the bioactive “unnatural” natural products from the crude extract of A. galanga (L.) by chemical conversion and on its activities against causal pathogens of leishmaniasis, trypanosomiasis, and malaria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号