首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1355篇
  免费   57篇
  国内免费   11篇
化学   926篇
晶体学   17篇
力学   33篇
数学   187篇
物理学   260篇
  2023年   9篇
  2021年   23篇
  2020年   30篇
  2019年   24篇
  2018年   28篇
  2017年   18篇
  2016年   32篇
  2015年   34篇
  2014年   34篇
  2013年   58篇
  2012年   87篇
  2011年   86篇
  2010年   36篇
  2009年   34篇
  2008年   60篇
  2007年   70篇
  2006年   73篇
  2005年   48篇
  2004年   56篇
  2003年   34篇
  2002年   43篇
  2001年   37篇
  2000年   30篇
  1999年   14篇
  1998年   11篇
  1997年   27篇
  1996年   22篇
  1995年   12篇
  1994年   18篇
  1993年   17篇
  1992年   17篇
  1991年   19篇
  1990年   15篇
  1989年   15篇
  1987年   14篇
  1986年   11篇
  1985年   16篇
  1984年   10篇
  1983年   8篇
  1982年   16篇
  1981年   8篇
  1980年   8篇
  1979年   12篇
  1978年   13篇
  1977年   12篇
  1976年   17篇
  1975年   11篇
  1974年   14篇
  1973年   7篇
  1972年   8篇
排序方式: 共有1423条查询结果,搜索用时 31 毫秒
41.
The reaction of UO(2)(NO(3))(2).6H(2)O with Cs(2)CO(3) or CsCl, H(3)PO(4), and Ga(2)O(3) under mild hydrothermal conditions results in the formation of Cs(4)[(UO(2))(2)(GaOH)(2)(PO(4))(4)].H(2)O (UGaP-1) or Cs[UO(2)Ga(PO(4))(2)] (UGaP-2). The structure of UGaP-1 was solved from a twinned crystal revealing a three-dimensional framework structure consisting of one-dimensional (1)(infinity)[Ga(OH)(PO(4))(2)](4-) chains composed of corner-sharing GaO(6) octahedra and bridging PO(4) tetrahedra that extend along the c axis. The phosphate anions bind the UO(2)(2+) cations to form UO(7) pentagonal bipyramids. The UO(7) moieties edge-share to create dimers that link the gallium phosphate substructure into a three-dimensional (3)(infinity)[(UO(2))(2)(GaOH)(2)(PO(4))(4)](4-) anionic lattice that has intersecting channels running down the b and c axes. Cs(+) cations and water molecules occupy these channels. The structure of UGaP-2 is also three-dimensional and contains one-dimensional (1)(infinity)[Ga(PO(4))(2)](3-) gallium phosphate chains that extend down the a axis. These chains are formed from fused eight-membered rings of corner-sharing GaO(4) and PO(4) tetrahedra. The chains are in turn linked together into a three-dimensional (3)(infinity)[UO(2)Ga(PO(4))(2)](1-) framework by edge-sharing UO(7) dimers as occurs in UGaP-1. There are channels that run down the a and b axes through the framework. These channels contain the Cs(+) cations. Ion-exchange studies indicate that the Cs(+) cations in UGaP-1 and UGaP-2 can be exchanged for Ca(2+) and Ba(2+). Crystallographic data: UGaP-1, monoclinic, space group P2(1)/c, a = 18.872(1), b = 9.5105(7), c = 14.007(1) A, beta = 109.65(3)(o) , Z = 4 (T = 295 K); UGaP-2, triclinic, space group P, a = 7.7765(6), b = 8.5043(7), c = 8.9115(7) A, alpha = 66.642(1)(o), beta = 70.563(1)(o), gamma = 84.003(2)(o), Z = 2 (T = 193 K).  相似文献   
42.
Novel open-framework alkali metal uranyl periodates, having the formula A[(UO2)3(HIO6)(OH)(O)(H2O)].1.5H2O (A = Li, Na, K, Rb, Cs), have been prepared through mild hydrothermal synthesis. These isostructural compounds contain distorted UO7 pentagonal bipyramids that are linked through a uranyl (UO22+) to uranyl cation-cation interaction. This interaction arises from a single axial uranyl oxygen coordinating at an equatorial site of an adjacent uranyl unit. These uranium oxide polyhedra are further bound by IO6 distorted octahedra creating an open-framework structure whose channels contain the alkali metal cations.  相似文献   
43.
The structural variations and bioactivity properties of the alkaloids in the fascaplysin (1) and the reticulatine (3) families were examined. Four organisms were analyzed consisting of two collections of the sponge Fascaplysinopsis reticulata and two collections of the tunicate Didemnum sp. Reported are the isolation of three new compounds: 3-bromofascaplysin (2), 14-bromoreticulatine (4), and 14-bromoreticulatate (6) along with reticulatate (5) previously known as a semi-synthetic product of 1. Compounds 1 and 5 showed selectivity in a cell based cytotoxicity assay.  相似文献   
44.
The preparations of the new complexes [AsBr(3)[MeS(CH(2))(2)SMe]], [AsX(3)([9]aneS(3))] (X = Cl, Br or I; [9]aneS(3) = 1,4,7-trithiacyclononane), [AsCl(3)([14]aneS(4))] ([14]aneS(4) = 1,4,8,11-tetrathiacyclotetradecane), [AsX(3)([8]aneSe(2))] ([8]aneSe(2) = 1,5-diselenacyclooctane), [(AsX(3))(2)([16]aneSe(4))] ([16]aneSe(4) = 1,5,9,13-tetraselenacyclohexadecane), and [(AsBr(3))(2)([24]aneSe(6))] ([24]aneSe(6) = 1,5,9,13,17,21-hexaselenacyclotetracosane) are described. These are obtained from direct reaction of the appropriate AsX(3) and 1 mol equiv of the thio- or selenoether ligand in anhydrous CH(2)Cl(2) (or thf for X = I) solution. The products have been characterized by microanalysis and IR and (1)H NMR spectroscopy. In solution they are extensively dissociated, reflecting the weak Lewis acidity of AsX(3). Reaction of AsX(3) with MeSe(CH(2))(2)SeMe or MeC(CH(2)EMe)(3) (E = S or Se) gave only oils. Treatment of PCl(3) or PBr(3) with Me(2)S, MeE(CH(2))(2)EMe, or [9]aneS(3) failed to give solid complexes, and there was no evidence from NMR spectroscopy for any adduct formation in solution. The crystal structures of the first series of thioether and selenoether complexes of As(III) are described: [AsBr(3)[MeS(CH(2))(2)SMe]], C(4)H(10)AsBr(3)S(2), a = 10.2818(6) A, b = 7.8014(5) A, c = 14.503(1) A, beta = 102.9330(2) degrees, monoclinic, P2(1)/c, Z = 4; [AsI(3)[MeS(CH(2))(2)SMe]], C(4)H(10)AsI(3)S(2), a = 9.1528(1) A, b = 11.5622(2) A, c = 12.0939(2) A, beta = 93.863(1) degrees, monoclinic, P2(1)()/n, Z = 4; [AsCl(3)([9]aneS(3))], C(6)H(12)AsCl(3)S(3), a = 17.520(4) A, b = 17.520(4) A, c = 16.790(7) A, tetragonal, I4(1)cd, Z = 16; [AsCl(3)([14]aneS(4))], C(10)H(20)AsCl(3)S(4), a = 13.5942(2) A, b = 7.7007(1) A, c = 18.1270(3) A, beta = 111.1662(5) degrees, monoclinic, P2(1)()/n, Z = 4; [(AsCl(3))(2)([16]aneSe(4))], C(12)H(24)As(2)Cl(6)Se(4), a = 9.764(3) A, b = 13.164(1) A, c = 10.627(2) A, beta = 114.90(1) degrees, monoclinic, P2(1)()/n, Z = 2; [(AsBr(3))(2)([16]aneSe(4))], C(12)H(24)As(2)Br(6)Se(4), a = 10.1220(1) A, b = 13.4494(2) A, c = 10.5125(2) A, beta = 113.49(2) degrees, monoclinic, P2(1)()/n, Z = 2. [AsBr(3)[MeS(CH(2))(2)SMe]] and [AsI(3)[MeS(CH(2))(2)SMe]] reveal discrete mu(2)-halo As(2)X(6) dimeric structures involving distorted octahedral As(III), with the dithioether ligand chelating. [AsCl(3)([9]aneS(3))] adopts a discrete molecular distorted octahedral geometry with the thioether behaving as a weakly coordinated fac-capping ligand. [AsCl(3)([14]aneS(4))] forms an infinite sheet involving two mu(2)-chloro ligands on each As but bridging to two distinct As centers. Each macrocycle coordinates to two adjacent As centers via one S atom, giving a cis-octahedral Cl(4)S(2) donor set at As(III). The structures of [(AsCl(3))(2)([16]aneSe(4))] and [(AsBr(3))(2)([16]aneSe(4))] adopt 2-dimensional sheet structures with mu(2)-dihalo As(2)X(6) dimers cross-linked by mu(4)-tetraselenoether macrocycles, giving a disorted cis-X(4)Se(2) donor set at each As center. These species are compared with their antimony(III) and bismuth(III) analogues where appropriate.  相似文献   
45.
C.J. Reid 《Chemical physics》1996,210(3):501-511
Translational-energy spectroscopy was applied to collisional-excitation and charge-inversion reactions of CF+, CCl+, SiF+ and SiCl+ in order to gain energetic and bond-length information about the anionic and excited-cationic states of the title molecules. The excitation spectra revealed that the ã3Π state, known in CCl+ and SiCl+, has a term energy of 4.85 ± 0.15 eV in CF+ and 4.70 ± 0.20 eV in SiF+, while the 11Π state, known in CCl+, is not below the dissociation threshold in CF+, SiF+ and SiCl+. These data, and bond-length estimates for the ã3Π states, are consistent with documented ab initio predictions except for re of CF+3Π) which seems to be larger than 1.21 Å. Charge-inversion spectra indicated that beams of monohalide cations formed from the tetrahalides, contained substantial proportions of ã3Π-state ions, and, in the case of CCl, SiF and SiCl, the broadness of spectral peaks was taken as evidence for the stability of the ã1Δ-state anion. Adiabatic electron affinities were deduced to be 0.49 ± 0.15 eV, 0.89 ± 0.20 eV, 1.34 ± 0.30 eV and 1.40 ± 0.30 eV for the title molecules, respectively.  相似文献   
46.
Herein, we report a highly sensitive luminescent thin film chemosensor constructed out of a small-molecule donor/acceptor system. Two types of films were compared: one using a small-molecule crystalline donor/acceptor pair and the other using a donor-graft polymer/small-molecule acceptor pair. The acceptor selected for this proof of concept responds to acid, causing its absorption and emission bands to red-shift, which increases spectral overlap with the donor. This increase in overlap greatly enhances energy transfer from the acceptor to the donor. Signal amplification was ascertained by measuring the ratio of acceptor fluorescence when the donor was excited versus direct excitation of the acceptor. Both types of films exhibited large amplification. For the polymeric system, the mechanism of energy migration was investigated by the use of steady-state fluorescence spectroscopy. The mechanism was determined to be dominated by an exciton-hopping process.  相似文献   
47.
Heteronuclear diethylcarbamato complexes of the form Co(n)()Mg(6)(-)(n)()(Et(2)NCO(2))(12) were prepared from the isostructural homonuclear precursors Mg(6)(Et(2)NCO(2))(12), 1, and Co(6)(Et(2)NCO(2))(12), 2, via a solvothermal methodology. Two materials were selected for single-crystal X-ray diffraction analysis: Co(1.6)Mg(4.4)(Et(2)NCO(2))(12) and Co(2.7)Mg(3.3)(Et(2)NCO(2))(12). Both compounds crystallize in the orthorhombic space group Ccca, as do 1 and 2. The molecular structure is best described as two trinuclear M(3) units cross-linked by diethylcarbamate ligands and twisted about one another, so that the complex has overall D(2) symmetry and is chiral. Each trinuclear unit consists of two terminal pentacoordinate metal ions and one central hexacoordinate metal ion. The X-ray diffraction data were unambiguous that the Co(2+) ions migrate exclusively to the pentacoordinate sites in the heteronuclear complexes, thus demonstrating that metal ion scrambling at the molecular level must occur. The composition of individual crystals can be continuously varied for Co(2+) mole fractions chi(Co) < 0.5, and the a and c unit cell distances are linearly related to chi(Co). This indicates that the compounds behave as solid solutions. There appears to be either a chemical or crystallographic phenomenon inherent in the synthetic methodology that prevents isolation of heteronuclear materials having chi(Co) > 0.5. Solution electronic spectroscopy and molecular weight measurements show that 2 can dissociate in chloroform and cyclohexane solution to give a dimeric complex 2'. This behavior contrasts with the stability of 1 in solution, as shown by NMR. The kinetic rate profile for formation of Co(n)Mg(6-n)(Et(2)NCO(2))(12) reveals saturation kinetics and is consistent with direct attack by 2' on 1 to give the heteronuclear complex via a higher nuclearity intermediate. This study illustrates a general method for the preparation of solids based on heteronuclear Werner-type complexes of the M(6)(Et(2)NCO(2))(12) structure type, and the mechanism by which such compounds can be formed from isostructural homonuclear precursors.  相似文献   
48.
A reinvestigation of sponge natural products from additional Indo-Pacific collections of Xestospongiacf. carbonaria and X. cf. exigua has provided further insights on the structures, biological activities, and biosynthetic origin of bisannulated acridines. These alkaloids include one known pyridoacridine, neoamphimedine (2), and three new analogues, 5-methoxyneoamphimedine (4), neoamphimedine Y (5), and neoamphimedine Z (6). A completely new acridine, alpkinidine (7), was also isolated. A disk diffusion soft agar assay, using a panel of five cancer cell lines (solid tumors and leukemias) and two normal cells, was used to evaluate the differential cytotoxicity (solid tumor selectivity) of the sponge semipure extracts and selected compounds including amphimedine (1), 2, 4, and 7. While all four compounds were solid tumor selective, 1 and 2 were the most potent and 4 was the most selective. The rationale used to characterize the new structures is outlined along with the related biosynthetic pathways envisioned to generate 2 and 7.  相似文献   
49.
Harrison TJ  Dake GR 《Organic letters》2004,6(26):5023-5026
[reaction: see text] Cyclic ene-N-p-toluenesulfonamides tethered to an electron-deficient alkyne undergo cycloisomerizations readily under the influence of catalytic Pt(II) salts (PtCl2 or [dppbPtmu-OH]2(BF4)2) or AgOTf. Yields for this process range from 47% to 99%. The resulting functionalized 2-azahydrindans can be reacted further using the Diels-Alder reaction. Tandem cycloisomerization-cycloaddition reactions in one pot generate highly functionalized 1-azadecalin ring systems in a highly stereocontrolled manner.  相似文献   
50.
A method to determine the extent of angular scattering of fragment-ion products of keV-collision-activated decomposition (CAD) reactions and, in particular, the collisional scatter incurred by the parent ions prior to their dissociation, is outlined. Since the half-widths of the collisional scatter profiles correlate approximately with the mean reaction endothermicities for some ‘test’ reactions, the method may, in principle, be used to estimate the stabilities of isomeric ion structures relative to a common fragmentation threshold level. For single-proton-loss CAD reactions of some [H3, C, X]+ ions (X = F, Cl, OH) with either [H3CX]+ or ylidion, [H2CXH]+ structure, collisional scatter is found in each case to be greater for the isomeric ion with the more stable structure. The estimated magnitudes of the mean energy depositions occurring in the keV-collision-activation processes are generally much larger than the calculated minimum energy requirements, suggesting that survivable [M ? H]+ products can be formed with up to several eV of internal energy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号