首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1380篇
  免费   46篇
  国内免费   11篇
化学   937篇
晶体学   17篇
力学   33篇
数学   187篇
物理学   263篇
  2023年   11篇
  2022年   19篇
  2021年   23篇
  2020年   30篇
  2019年   24篇
  2018年   28篇
  2017年   18篇
  2016年   32篇
  2015年   34篇
  2014年   34篇
  2013年   58篇
  2012年   87篇
  2011年   86篇
  2010年   36篇
  2009年   34篇
  2008年   60篇
  2007年   70篇
  2006年   73篇
  2005年   48篇
  2004年   56篇
  2003年   34篇
  2002年   43篇
  2001年   37篇
  2000年   30篇
  1999年   14篇
  1998年   11篇
  1997年   27篇
  1996年   22篇
  1995年   12篇
  1994年   18篇
  1993年   17篇
  1992年   17篇
  1991年   19篇
  1990年   15篇
  1989年   15篇
  1987年   14篇
  1986年   11篇
  1985年   16篇
  1984年   10篇
  1983年   8篇
  1982年   16篇
  1981年   8篇
  1980年   8篇
  1979年   12篇
  1978年   13篇
  1977年   12篇
  1976年   17篇
  1975年   11篇
  1974年   14篇
  1972年   8篇
排序方式: 共有1437条查询结果,搜索用时 0 毫秒
31.
A method to determine the extent of angular scattering of fragment-ion products of keV-collision-activated decomposition (CAD) reactions and, in particular, the collisional scatter incurred by the parent ions prior to their dissociation, is outlined. Since the half-widths of the collisional scatter profiles correlate approximately with the mean reaction endothermicities for some ‘test’ reactions, the method may, in principle, be used to estimate the stabilities of isomeric ion structures relative to a common fragmentation threshold level. For single-proton-loss CAD reactions of some [H3, C, X]+ ions (X = F, Cl, OH) with either [H3CX]+ or ylidion, [H2CXH]+ structure, collisional scatter is found in each case to be greater for the isomeric ion with the more stable structure. The estimated magnitudes of the mean energy depositions occurring in the keV-collision-activation processes are generally much larger than the calculated minimum energy requirements, suggesting that survivable [M ? H]+ products can be formed with up to several eV of internal energy.  相似文献   
32.
The reaction of [MCl2(NCMe)2] (M = Pd or Pt) with 2 molar equiv of MeC(CH2ER)3 (E = Se, R = Me; E = Te, R = Me or Ph) and 2 molar equiv of TlPF6 affords the bis ligand complexes [M(MeC(CH2ER)3)2][PF6]2. The crystal structure of [Pt(MeC(CH2SeMe)3)2][PF6]2 (C16H36F12P2PtSe6, a = 12.272(10) A, b = 18.563(9) A, c = 15.285(7) A, beta = 113.18(3) degrees, monoclinic, P2(1)/n, Z = 4) confirms distorted square planar Se4 coordination at Pt(II), derived from two bidentate tripod selenoethers with the remaining arm not coordinated and directed away from the metal center. Solution NMR studies indicate that these species are fluxional and that the telluroether complexes are rather unstable in solution. The octahedral bis tripod complexes [Ru(MeC(CH2SMe)3)2][CF3-SO3]2 and [Ru(MeC(CH2TePh)3)2][CF3SO3]2 are obtained from [Ru(dmf)6][CF3SO3]3 and tripod ligand in EtOH solution. The thioether complex (C18H36F6O6RuS8, a = 8.658(3) A, b = 11.533(3) A, c = 8.659(2) A, alpha = 108.33(2) degrees, beta = 91.53(3) degrees, gamma = 106.01(2) degrees, triclinic, P1, Z = 1) is isostructural with its selenoether analogue, involving two facially coordinated trithioether ligands in the syn configuration. NMR spectroscopy confirms that this configuration is retained in solution for all of the bis tripod Ru(II) complexes. These low-spin d6 complexes show unusually high ligand field splittings. The hexaselenoether Rh(III) complex [Rh(MeC(CH2SeMe)3)2][PF6]3 was obtained by treatment of [Rh(H2O)6]3+ with 2 molar equiv of MeC(CH2SeMe)3 in aqueous MeOH in the presence of excess PF6- anion, while the iridium(III) analogue [Ir(MeC(CH2SeMe)3)2][PF6]3 was obtained via the reaction of the Ir(I) precursor [IrCl(C8H14)2]2 with the selenoether tripod in MeOH/aqueous HBF4. NMR studies reveal different invertomers in solution for both the Rh and Ir species. The Cu(I) complexes [Cu(MeC(CH2ER)3)2]PF6 were obtained from [Cu(NCMe)4]PF6 and tripod ligand in CH2Cl2 solution. The corresponding Ag(I) species [Ag(MeC(CH2TeR)3)2]CF3SO3 (R = Me or Ph) were obtained from Ag[CF3SO3] and tripod telluroether. In contrast, a similar reaction with 2 molar equiv of MeC(CH2SeMe)3 afforded only the 1:1 complex [Ag(MeC(CH2SeMe)3)]CF3SO3. The structure of this species (C9H18AgF3O3SSe3, a = 8.120(3) A, b = 15.374(3) A, c = 14.071(2) A, beta = 93.86(2) degrees, monoclinic, P2(1)/n, Z = 4) reveals a distorted trigonal planar geometry at Ag(I) derived from one bidentate selenoether and one monodentate selenoether. These units are then linked to adjacent Ag(I) ions to give a one-dimensional linear chain cation.  相似文献   
33.
We recorded dispersed fluorescence (DF) spectra following excitation of the pure bending levels 2(0) (n) and the combination states 1(0) (1)2(0) (n) and 2(0) (n)3(0) (1) in the A 1A"<--X 1A' system of HCF and DCF. Spectra were measured with a 0.3 m spectrograph equipped with a gated intensified charge coupled device (CCD) detector and obtained under jet-cooled conditions using a pulsed discharge source. The DF spectra reveal rich detail concerning the vibrational structure of the X state up to 10 000 cm(-1). For HCF, resonances among the nearly degenerate levels 1(1)2n, 2n+13(1), and 2n+2 produce a polyadlike structure in the spectrum, and the usual effective spectroscopic Hamiltonian (Dunham expansion) poorly reproduces the experimental term energies. In contrast, this Hamiltonian works well for the term energies of DCF. Density functional calculations of the ground state vibrational frequencies were performed; the results are in excellent agreement with the experimentally derived vibrational parameters. The search for perturbations involving the low-lying a 3A" state is described.  相似文献   
34.
35.
36.
Complexes of the title ligand with Cu(I), Ag(I), Au(I), Pd(II), Pt(II), Rh(III), and rare examples with Ni(II) and Co(III) have been prepared and characterised by analysis, IR, UV-vis, 1H, 63Cu and 59Co NMR spectroscopy and ES+ mass spectrometry as appropriate. The structures of [Cu[1,2-C6H4(CH2SbMe2)2]2]BF4, [PtCl2[1,2-C6H4(CH2SbMe2)2]], [M[1,2-C6H4(CH2SbMe2)2]2][PF6]2 (M = Pd or Pt), and [NiI[1,2-C6H4(CH2SbMe2)2]2]ClO4 have been determined, and the varying chelate bite and conformations of the xylyl backbone in these structures are discussed. Despite the unfavourable seven-membered chelate ring and the large soft antimony donors, 1,2-C6H4(CH2SbMe2)2 proves to be a surprisingly good ligand for late transition metals in medium oxidation states.  相似文献   
37.
A fast centroid molecular dynamics (CMD) methodology is proposed in which the effective centroid forces are predetermined through a force-matching algorithm applied to a standard path integral molecular dynamics simulation. The resulting method greatly reduces the computational cost of generating centroid trajectories, thus extending the applicability of CMD. The method is applied to the study of liquid para-hydrogen at two state points and liquid ortho-deuterium at one state point. The static and dynamical results are compared to those obtained from full adiabatic CMD simulations and found to be in excellent agreement for all three systems; the transport properties are also compared to experiment and found to have a similar level of agreement.  相似文献   
38.
1-Phenyl-2-(benzenesulphonyl)-ethylene and 1-phenyl-2-(benzenesulphonyl)-prop-1-ene have been shown to undergo Z,E-photoisomerisation, whereas 2-benzenesulphonylindene readily forms [π2 + π2] photoadducts with 2,3-dimethylbut-2-ene, cyclopentene, and cyclohexene.  相似文献   
39.
Binuclear manganese complexes Mn2(III/IV)(dtsalpn)2DCBI, 1, Mn2(III/III)(dtsalpn)2HDCBI, 2, containing the ligand dicarboxyimidazole (DCBI) have been prepared in order to address the issue of imidazole bridged and ferromagnetically coupled Mn sites in high oxidation states of the OEC in Photosystem II (PS II). Temperature dependent magnetic susceptibility studies of 1 indicates that the interaction between the two Mn(III)/Mn(IV) ions is ferromagnetic (J = +1.4 cm(-1)). Variable temperature EPR spectra of 1 shows that a g = 2 multiline is as an excited state signal corresponding to S = 1/2.  相似文献   
40.
Aronia berry (black chokeberry) is a shrub native to North America, of which the fresh fruits are used in the food industry to produce different types of dietary products. The fruits of Aronia melanocarpa (Aronia berries) have been found to show multiple bioactivities potentially beneficial to human health, including antidiabetic, anti-infective, antineoplastic, antiobesity, and antioxidant activities, as well as heart-, liver-, and neuroprotective effects. Thus far, phenolic compounds, such as anthocyanins, cyanidins, phenolic acids, proanthocyanidins, triterpenoids, and their analogues have been identified as the major active components of Aronia berries. These natural products possess potent antioxidant activity, which contributes to the majority of the other bioactivities observed for Aronia berries. The chemical components and the potential pharmaceutical or health-promoting effects of Aronia berries have been summarized previously. The present review article focuses on the molecular targets of extracts of Aronia berries and the examples of promising lead compounds isolated from these berries, including cyanidin-3-O-galactoside, chlorogenic acid, quercetin, and ursolic acid. In addition, presented herein are clinical trial investigations for Aronia berries and their major components, including cancer clinical trials for chlorogenic acid and COVID-19 trial studies for quercetin. Additionally, the possible development of Aronia berries and their secondary metabolites as potential therapeutic agents is discussed. It is hoped that this contribution will help stimulate future investigations on Aronia berries for the continual improvement of human health.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号