首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   629篇
  免费   36篇
  国内免费   5篇
化学   456篇
晶体学   8篇
力学   7篇
数学   121篇
物理学   78篇
  2023年   7篇
  2022年   12篇
  2021年   16篇
  2020年   25篇
  2019年   22篇
  2018年   20篇
  2017年   15篇
  2016年   25篇
  2015年   27篇
  2014年   28篇
  2013年   31篇
  2012年   51篇
  2011年   49篇
  2010年   20篇
  2009年   19篇
  2008年   26篇
  2007年   35篇
  2006年   32篇
  2005年   28篇
  2004年   25篇
  2003年   20篇
  2002年   21篇
  2001年   9篇
  2000年   9篇
  1999年   3篇
  1998年   4篇
  1997年   4篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   6篇
  1991年   2篇
  1989年   3篇
  1987年   4篇
  1986年   3篇
  1985年   7篇
  1984年   5篇
  1983年   4篇
  1982年   9篇
  1981年   3篇
  1980年   3篇
  1978年   3篇
  1977年   3篇
  1976年   5篇
  1975年   3篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
  1929年   2篇
排序方式: 共有670条查询结果,搜索用时 15 毫秒
21.
The sequential addition of CN? or CH3? and electrophiles to three perfluoroalkylfullerenes (PFAFs), Cs‐C70(CF3)8, C1‐C70(CF3)10, and Csp‐C60(CF3)2, was carried out to determine the most reactive individual fullerene C atoms (as opposed to the most reactive C?C bonds, which has previously been studied). Each PFAF reacted with CH3? or CN? to generate metastable PFAF(CN)? or PFAF(CH3)22? species with high regioselectivity (i.e., one or two predominant isomers). They were treated with electrophiles E+ to generate PFAF(CN)(E) or PFAF(CH3)2(E)2 derivatives, also with high regioselectivity (E+=CN+, CH3+, or H+). All of the predominant products, characterized by mass spectrometry and 19F NMR spectroscopy, are new compounds. Some could be purified by HPLC to give single isomers. Two of them, C70(CF3)8(CN)2 and C70(CF3)10(CH3)2(CN)2, were characterized by single‐crystal X‐ray diffraction. DFT calculations were used to propose whether a particular reaction is under kinetic or thermodynamic control.  相似文献   
22.
The structural variations and bioactivity properties of the alkaloids in the fascaplysin (1) and the reticulatine (3) families were examined. Four organisms were analyzed consisting of two collections of the sponge Fascaplysinopsis reticulata and two collections of the tunicate Didemnum sp. Reported are the isolation of three new compounds: 3-bromofascaplysin (2), 14-bromoreticulatine (4), and 14-bromoreticulatate (6) along with reticulatate (5) previously known as a semi-synthetic product of 1. Compounds 1 and 5 showed selectivity in a cell based cytotoxicity assay.  相似文献   
23.
The Co(III) complexes of N,N'-bis(2-mercaptophenyl)pyridine-2,6-dicarboxamide (PyPSH(4)), a designed pentadentate ligand with built-in carboxamide and thiolate groups, have been synthesized and studied to gain insight into the role of Cys-S oxidation in Co-containing nitrile hydratase (Co-NHase). Reaction of [Co(NH(3))(5)Cl]Cl(2) with PyPS(4)(-) in DMF affords the thiolato-bridged dimeric Co(III) complex (Et(4)N)(2)[Co(2)(PyPS)(2)] (1). Although the bridged structure is quite robust, reaction of (Et(4)N)(CN) with 1 in acetonitrile affords the monomeric species (Et(4)N)(2)[Co(PyPS)(CN)] (2). Oxidation of 2 with H(2)O(2) in acetonitrile gives rise to a mixture which, upon chromatographic purification, yields K(2)[Co(PyPSO(2)(OSO(2))(CN] (3), a species containing asymmetrically oxidized thiolates. The Co(III) metal center in 3 is coordinated to a S-bound sulfinate and an O-bound sulfonate (OSO(2)) group. Upon oxidation with H(2)O(2), 1 affords an asymmetrically oxidized dimer (Et(4)N)(2)[Co(2)(PyPS(SO(2)))(2)] (4) in which only the terminal thiolates are oxidized to form S-bound sulfinate groups while the bridging thiolates remain unchanged. The thiolato-bridge in 4 is also cleaved upon reaction with (Et(4)N)(CN) in acetonitrile, and one obtains (Et(4)N)(2)[Co(PyPS(SO(2)))(CN)] (5), a species that contains both coordinated thiolate and S-bound sulfinate around Co(III). The structures of 1-4 have been determined. The spectroscopic properties and reactivity of all the complexes have been studied to understand the behavior of the Co(III) site in Co-NHase. Unlike typical Co(III) complexes with bound CN(-) ligands, the Co(III) centers in 2 and 5 are labile and rapidly lose CN(-) in aqueous solutions. Since 3 does not show this lability, it appears that at least one thiolato sulfur donor is required in the first coordination sphere for the Co(III) center in such species to exhibit lability. Both 2 and 5 are converted to the aqua complexes [Co(PyPS)(H(2)O)](-) and [Co(PyPS(SO(2))(H(2)O)](-) in aqueous solutions. The pK(a) values of the bound water in these two species, determined by spectrophotometry, are 8.3 +/- 0.03 and 7.2 +/- 0.06, respectively. Oxidation of the thiolato sulfur (to sulfinate) therefore increases the acidity of the bound water. Since 2 and 5 promote hydrolysis of acetonitrile at pH values above their corresponding pK(a) values, it is also evident that a metal-bound hydroxide is a key player in the mechanism of hydrolysis by these model complexes of Co-NHase. The required presence of a Cys-sulfinic residue and one water molecule at the Co(III) site of Co-NHase as well as the optimal pH of the enzyme near 7 suggests that (i) modulation of the pK(a) of the bound water molecule at the active site of the enzyme could be one role of the oxidized Cys-S residue(s) and (ii) a cobalt-bound hydroxide could be responsible for the hydrolysis of nitriles by Co-NHase.  相似文献   
24.
Here, we introduce a new technique called embedded passivated-electrode insulator-based dielectrophoresis (EπDEP) for preconcentration, separation, or enrichment of bioparticles, including living cells. This new method combines traditional electrode-based DEP and insulator-based DEP with the objective of enhancing the electric field strength and capture efficiency within the microfluidic channel while alleviating direct contact between the electrode and the fluid. The EπDEP chip contains embedded electrodes within the microfluidic channel covered by a thin passivation layer of only 4 μm. The channel was designed with two nonaligned vertical columns of insulated microposts (200 μm diameter, 50 μm spacing) located between the electrodes (600 μm wide, 600 μm horizontal spacing) to generate nonuniform electric field lines to concentrate cells while maintaining steady flow in the channel. The performance of the chip was demonstrated using Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacterial pathogens in aqueous media. Trapping efficiencies of 100 % were obtained for both pathogens at an applied AC voltage of 50 V peak-to-peak and flow rates as high as 10 μl/min.  相似文献   
25.
Herein, we report a highly sensitive luminescent thin film chemosensor constructed out of a small-molecule donor/acceptor system. Two types of films were compared: one using a small-molecule crystalline donor/acceptor pair and the other using a donor-graft polymer/small-molecule acceptor pair. The acceptor selected for this proof of concept responds to acid, causing its absorption and emission bands to red-shift, which increases spectral overlap with the donor. This increase in overlap greatly enhances energy transfer from the acceptor to the donor. Signal amplification was ascertained by measuring the ratio of acceptor fluorescence when the donor was excited versus direct excitation of the acceptor. Both types of films exhibited large amplification. For the polymeric system, the mechanism of energy migration was investigated by the use of steady-state fluorescence spectroscopy. The mechanism was determined to be dominated by an exciton-hopping process.  相似文献   
26.
Rhodomyrtusials A–C, the first examples of triketone‐sesquiterpene meroterpenoids featuring a unique 6/5/5/9/4 fused pentacyclic ring system were isolated from Rhodomyrtus tomentosa, along with several biogenetically‐related dihydropyran isomers. Two bis‐furans and one dihydropyran isomer showed acetylcholinesterase (AChE) inhibitory activity. Structures of the isolates were unambiguously established by a combination of spectroscopic data, ECD analysis, and total synthesis. Bioinspired total syntheses of six isolates were achieved in six steps utilizing a reactive enetrione intermediate generated in situ from a readily available hydroxy‐endoperoxide precursor.  相似文献   
27.
A straightforward method for the asymmetric preparation of novel lactone and lactam spirocycles is described. An initial desymmetrization via a chiral Brønsted acid yields enantioenriched lactones which readily undergo a second cyclization to give the desired spirocycle.  相似文献   
28.
29.
We present the relationship between the spatial arrangement and the photophysical properties of fluorescent polymers in thin films with controlled structures. Eight surfactant poly(p-phenyleneethynylene)s were designed and studied. These detailed studies of the behavior of the polymers at the air-water interface, and of the photophysical properties of their transferred LB films, revealed key structure-property relationships. Some of the polymers displayed pi-aggregates that are characteristic of an edge-on structure at the air-water interface. Monolayer LB films of these polymers showed greatly reduced quantum yields relative to solution values. Other polymers exhibited a highly emissive face-on structure at the air-water interface, and did not form pi-aggregates. The combination of pressure-area isotherms and the surface pressure dependent in situ UV-vis spectra of the polymers at the air-water interface revealed different behavioral details. In addition, the UV-vis spectra, fluorescence spectra, and quantum yields of the LB films provide design principles for making highly emissive films.  相似文献   
30.
The electronic structure of cis,trans-(L-N(2)S(2))MoO(X) (where L-N(2)S(2) = N,N'-dimethyl-N,N'-bis(2-mercaptophenyl)ethylenediamine and X = Cl, SCH(2)C(6)H(5), SC(6)H(4)-OCH(3), or SC(6)H(4)CF(3)) has been probed by electronic absorption, magnetic circular dichroism, and resonance Raman spectroscopies to determine the nature of oxomolybdenum-thiolate bonding in complexes possessing three equatorial sulfur ligands. One of the phenyl mercaptide sulfur donors of the tetradentate L-N(2)S(2) chelating ligand, denoted S(180), coordinates to molybdenum in the equatorial plane such that the OMo-S(180)-C(phenyl) dihedral angle is approximately 180 degrees, resulting in a highly covalent pi-bonding interaction between an S(180) p orbital and the molybdenum d(xy) orbital. This highly covalent bonding scheme is the origin of an intense low-energy S --> Mo d(xy) bonding-to-antibonding LMCT transition (E(max) approximately 16000 cm(-)(1), epsilon approximately 4000 M(-)(1) cm(-)(1)). Spectroscopically calibrated bonding calculations performed at the DFT level of theory reveal that S(180) contributes approximately 22% to the HOMO, which is predominantly a pi antibonding molecular orbital between Mo d(xy) and the S(180) p orbital oriented in the same plane. The second sulfur donor of the L-N(2)S(2) ligand is essentially nonbonding with Mo d(xy) due to an OMo-S-C(phenyl) dihedral angle of approximately 90 degrees. Because the formal Mo d(xy) orbital is the electroactive or redox orbital, these Mo d(xy)-S 3p interactions are important with respect to defining key covalency contributions to the reduction potential in monooxomolybdenum thiolates, including the one- and two-electron reduced forms of sulfite oxidase. Interestingly, the highly covalent Mo-S(180) pi bonding interaction observed in these complexes is analogous to the well-known Cu-S(Cys) pi bond in type 1 blue copper proteins, which display electronic absorption and resonance Raman spectra that are remarkably similar to these monooxomolybdenum thiolate complexes. Finally, the presence of a covalent Mo-S pi interaction oriented orthogonal to the MOO bond is discussed with respect to electron-transfer regeneration in sulfite oxidase and Mo=S(sulfido) bonding in xanthine oxidase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号