Western blot (protein immunoblot) is a widely used analytical technique in molecular biology. Utilizing the specific recognizing primary antibody, proteins immobilized on various matrix are investigated by subsequent visualization steps, for example, by the horse radish peroxidase conjugated secondary antibody incubation. Methods to improve the sensitivity in protein identification or quantification are appreciated by biochemists. Herein, we report a new strategy to amplify Western blot signals by constructing a probe with proximal labeling and IgG targeting abilities. The R118G mutation attenuated the biotin-AMP binding affinity of the bacterial biotin ligase BirA*, offering a proximity-dependent labeling ability, which could be used as a signal amplifier. We built a BirA*-protein A fusion protein (BioEnhancer) that specifically binds to IgG and adds biotin tags to its proximal amine groups, enhancing the immunosignal of target proteins. In our experiments, the BioEnhancer system amplified the immunosignal by tenfold compared to the standard western blot. Additionally, our strategy could couple with other signal enhancement methods to further increase the western blot sensitivity. 相似文献
Y chromosome kits are successfully applied in cases where human biological material exists. With the development of genotyping ability, more Y chromosomal markers are needed for finer identification of male individuals and lineages. In this study, a developmental validation of a newly emerged Y chromosome kit that combines two different kinds of markers: 38 Y-STRs and 3 Y-indels are conducted. The results show that this kit has high sensitivity when there is a small amount of DNA (125 pg), more than one male (minor:major = 1:7), or a mixture of males and females (male:female = 125pg:1875pg), inhibited substances (800 μM hematin and more than 1600 ng/μL humic acid). The kit exhibits high precision level with a standard deviation of allele size no more than 0.14 nt. Locus DYS481 shows the largest stutter rate, with three stutters per true allele. Population samples are well identified (MP of 0.001106), and mutations can be observed in father–son pairs (46 mutations in 70 pairs, 10 in locus DYS627). Out of all the population samples, 13.2% belong to haplogroup M117-O2a2b1a1, with their ethnic group being Han Chinese. The results show that this kit can improve the performance of identifying male individuals, obtaining more unique haplotypes (increasing from 894 to 918 of 1000 male samples) and higher discrimination capacity (increasing from 0.942 to 0.955) in this study compared to previous widely used Yfiler Plus kit. Besides, it gives information about their paternal lineages in forensic genetic casework and genealogical database construction. 相似文献
In this work, we aim to observe and study the physics of bacteria and cancer cells pearl chain formation under dielectrophoresis (DEP). Experimentally, we visualized the formation of Bacillus subtilis bacterial pearl chain and human breast cancer cell (MCF-7) chain under positive and negative dielectrophoretic force, respectively. Through a simple simulation with creeping flow, AC/DC electric fields, and particle tracing modules in COMSOL, we examined the mechanism by which bacteria self-organize into a pearl chain across the gap between two electrodes via DEP. Our simulation results reveal that the region of greatest positive DEP force shifts from the electrode edge to the leading edge of the pearl chain, thus guiding the trajectories of free-flowing particles toward the leading edge via positive DEP. Our findings additionally highlight the mechanism why the free-flowing particles are more likely to join the existing pearl chain rather than starting a new pearl chain. This phenomenon is primarily due to the increase in magnitude of electric field gradient, and hence DEP force exerted, with the shortening gap between the pearl chain leading edge and the adjacent electrode. The findings shed light on the observed behavior of preferential pearl chain formation across electrode gaps. 相似文献
Kyrgyz ethnic group is one of the nomads in China, with the majority in Xinjiang and a small part of them living in Heilongjiang province. Historically, they have went through five migrations westward due to the wars. The name “Kyrgyz” means 40 tribes, originating from the primary groups of Kyrgyz. However, it is a largely understudied population, especially from the Y chromosome. In this study, we used a previously validated high-resolution Y-chromosome single nucleotide polymorphisms (Y-SNPs) and short tandem repeats (Y-STRs) system to study Kyrgyz ethnic group. A total of 314 male samples of Kyrgyz ethnic group were genotyped by 173 Y-SNPs and 27 Y-STRs. After data analysis, the results unveiled that Kyrgyz ethnic group was a population with high percentage of both haplogroup C2a1a3a1d∼-F10091 (91/134) and R1a1a1b2a2-Z2124 (109/134), which has never been reported. This implied that Kyrgyz ethnic group might have gone through bottleneck effects twice, with these two main lineages left. Mismatch analysis indicated that the biggest mismatch number in haplogroup C2a1a3a1d∼-F10091 was 10, while that of haplogroup R1a1a1b2a2-Z2124 was 20. This huge difference reflected the different substructure in two lineages, suggesting that haplogroup C2a1a3a1d∼-F10091 might have the least admixture compared to the other two lineages. After admixture modelling with other datasets, the conclusion could be drawn that Kyrgyz ethnic group had great genetic affinity with Punjabi from Lahore, Pakistan, which supported that Kyrgyz ethnic group in China was close to central Asian. 相似文献
Acetaminophen is a well-known drug commonly used to provide pain relief, but it can also lead to acute liver failure at high concentrations. Therefore, there is considerable interest in monitoring its concentrations. Sensitive and selective acetaminophen electrochemical sensors were designed by cycling a glassy carbon electrode (GCE) to high potentials in the presence of β-CD in a phosphate electrolyte, or by simply activating the GCE electrode in the phosphate solution. Using cyclic voltammetry, adsorption-like voltammograms were recorded. The acetaminophen oxidation product, N-acetyl benzoquinone imine, was protected from hydrolysis, and this was attributed to the adsorption of acetaminophen at the modified GCE. The rate constants for the oxidation of acetaminophen were estimated as 4.3 × 10–3 cm2 s–1 and 3.4 × 10–3 cm2 s–1 for the β-CD-modified and -activated electrodes, respectively. Using differential pulse voltammetry, the limit of detection was calculated as 9.7 × 10–8 M with a linear concentration range extending from 0.1 to 80 μM. Furthermore, good selectivity was achieved in the presence of caffeine, ascorbic acid and aspirin, enabling the determination of acetaminophen in a commercial tablet. Similar electrochemical data were obtained for both the β-CD-modified and activated GCE surfaces, suggesting that the enhanced detection of acetaminophen is connected mainly to the activation and oxidation of the GCE. Using SEM, EDX and FTIR, no evidence was obtained to indicate that the β-CD was electropolymerised at the GCE.
To expand the applications of graphene-based materials to biogas purification, a series of reduced graphene oxide aerogels (rGOAs) were prepared from industrial grade graphene oxide using a simple hydrothermal method. The influences of the hydrothermal preparation temperature on the textural properties, hydrophobicity and physisorption behavior of the rGOAs were investigated using a range of physical and spectroscopic techniques. The results showed that the rGOAs had a macro-porous three-dimensional network structure. Raising the hydrothermal treatment temperature reduced the number of oxygen-containing groups, whereas the specific surface area (SBET), micropore volume (Vmicro) and water contact angle values of the rGOAs all increased. The dynamic adsorption properties of the rGOAs towards hexamethyldisiloxane (L2) increased with increasing hydrothermal treatment temperature and the breakthrough adsorption capacity showed a significant linear association with SBET, Vmicro and contact angle. There was a significant negative association between the breakthrough time and inlet concentration of L2, and the relationship could be reliably predicted with a simple empirical formula. L2 adsorption also increased with decreasing bed temperature. Saturated rGOAs were readily regenerated by a brief heat-treatment at 100 °C. This study has demonstrated the potential of novel rGOA for applications using adsorbents to remove siloxanes from biogas. 相似文献
The charge-accelerated aza-Claisen rearrangement of ammonium salts serves as a key step in the construction of complex nitrogen-containing molecules. However, much less attention has been paid to the aromatic aza-Claisen rearrangement than to the aliphatic one. Herein, we report an unprecedented aromatic aza-Claisen rearrangement of arylpropargylammonium salts, generated in situ from arynes and tertiary propargylamines, delivering structurally diverse 2-propargylanilines in moderate to good yields with high regioselectivity. This rearrangement proceeds in the absence of strong bases or transition metals, is compatible with moisture and air, tolerates a wide variety of functional groups, and is amenable to forming 11- to 13-membered heterocycles with a triple bond. The 2-propargylaniline products were treated with aluminum chloride in ethanol to afford multisubstituted indoles in moderate to excellent yields. Finally, a series of deuterium-labeling experiments was performed to elucidate the reaction mechanism. 相似文献
Polyimide memory materials with a donor–acceptor structure based on a charge-transfer mechanism exhibit great potential for next-generation information storage technology due to their outstanding high-temperature resistance and good dimensional and chemical stability. Precisely controlling memory performance by limited chemical decoration is one of core challenges in this field. Most reported work mainly focuses on designing novel and elaborate electron donors or acceptors for the expected memory behavior of polyimides; this takes a lot of time and is not always efficacious. Herein, we report a series of porphyrinated copolyimides coPI−Znx (x=5, 10, 20, 50, 80), where x represents the mole percentage of Zn ion in the central core of the porphyrin. Experimental and theoretical analysis indicate that the Zn ion could play a vital bridge role in promoting the formation and stabilization of a charge-transfer complex by enhancing the hybridization of local and charge transfer (HLCT) excitations of porphyrinated polyimides, endowing coPI−Znx with volatile random access memory performance and continuously tunable retention time. This work could provide one simple strategy to precisely regulate memory performance merely by altering the metal content in porphyrinated polyimides. 相似文献
Diffusion of tracer particles in active bath has attracted extensive attention in recent years. So far, most studies have considered isotropic spherical tracer particles, while the diffusion of anisotropic particles has rarely been involved. Here we investigate the diffusion dynamics of a rigid rod tracer in a bath of active particles by using Langevin dynamics simulations in a two-dimensional space. Particular attention is paid to how the translation (rotation) diffusion coefficient \begin{document}$ D_{ \rm{T}} $\end{document} (\begin{document}$ D_{ \rm{R}} $\end{document}) change with the length of rod \begin{document}$ L $\end{document} and active strength \begin{document}$ F_{ \rm{a}} $\end{document}. In all cases, we find that rod exhibits superdiffusion behavior in a short time scale and returns to normal diffusion in the long time limit. Both \begin{document}$ D_{ \rm{T}} $\end{document} and \begin{document}$ D_{ \rm{R}} $\end{document} increase with \begin{document}$ F_{ \rm{a}} $\end{document}, but interestingly, a nonmonotonic dependence of \begin{document}$ D_{ \rm{T}} $\end{document} (\begin{document}$ D_{ \rm{R}} $\end{document}) on the rod length has been observed. We have also studied the translation-rotation coupling of rod, and interestingly, a negative translation-rotation coupling is observed, indicating that rod diffuses more slowly in the parallel direction compared to that in the perpendicular direction, a counterintuitive phenomenon that would not exist in an equilibrium counterpart system. Moreover, this anomalous (diffusion) behavior is reentrant with the increase of \begin{document}$ F_{ \rm{a}} $\end{document}, suggesting two competitive roles played by the active feature of bath particles. 相似文献
Three-dimensional (3D) diabatic potential energy surfaces (PESs) of thiophenol involving the S\begin{document}$_0$\end{document}, and coupled \begin{document}$^1$\end{document}\begin{document}$\pi\pi^*$\end{document} and \begin{document}$^1$\end{document}\begin{document}$\pi\sigma^*$\end{document} states were constructed by a neural network approach. Specifically, the diabatization of the PESs for the \begin{document}$^1$\end{document}\begin{document}$\pi\pi^*$\end{document} and \begin{document}$^1\pi\sigma^*$\end{document} states was achieved by the fitting approach with neural networks, which was merely based on adiabatic energies but with the correct symmetry constraint on the off-diagonal term in the diabatic potential energy matrix. The root mean square errors (RMSEs) of the neural network fitting for all three states were found to be quite small (\begin{document}$<$\end{document}4 meV), which suggests the high accuracy of the neural network method. The computed low-lying energy levels of the S\begin{document}$_0$\end{document} state and lifetime of the 0\begin{document}$^0$\end{document} state of S\begin{document}$_1$\end{document} on the neural network PESs are found to be in good agreement with those from the earlier diabatic PESs, which validates the accuracy and reliability of the PESs fitted by the neural network approach. 相似文献