首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   4篇
化学   32篇
力学   4篇
数学   3篇
物理学   1篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1997年   2篇
  1996年   2篇
  1987年   1篇
  1986年   2篇
  1979年   1篇
  1978年   1篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
21.
High‐performance polymer solar cells (PSCs) are typically fabricated by spin coating in inert atmosphere from toxic halogenated solvents such as 1,2‐dichlorobenzene (o‐DCB) and chlorobenzene. This fabrication process is potentially hazardous for both the humans and the environment and dramatically impacts the possibility for the organic photovoltaic technology to be adopted at large scale. In this work, efficient PSCs blade coated in air using nonhalogenated 1,2,4‐trimethylbenzene (TMB) as processing solvent are demonstrated. The active layer, based on a previously synthesized benchmark polymer PFQ2T‐benzodithiophene blended with [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM), showed an enhanced solid‐state aggregation induced by the use of TMB. Compared to o‐DCB‐processed devices, the solar cells fabricated from TMB resulted 10% more efficient with a power conversion efficiency of 4.20%. Interestingly, the improved photovoltaic performance resulted from the combination of synergic effects promoted by a more favorable film morphology, such as high exciton dissociation efficiency and lower bimolecular recombinations resulting in higher charge collection efficiency at the electrodes. The positive effect of TMB, compared to that of commonly employed halogenated solvents, confirms the great potential of this approach for the development of efficient PSCs for practical applications with reduced environmental impact. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 487–494  相似文献   
22.
Summary 1. To perform the hydrolysis of the technical preparation Saparal the optimum conditions are 30-min heating in a 1:1 mixture of acetic acid and 20% sulfuric acid or a 1:1 mixture of acetic acid and 30% sulfuric acid.2. It has been established that the hydrolysis of Saparal is a first-order reaction with Kh = 0.1855.Pyatigorsk Pharmaceutical Institute. Translated from Khimiya Prirodnykh Soedinenii, No. 5, pp. 590–592, September–October, 1978.  相似文献   
23.
24.
To expand upon the recent pioneering reports of catalyzed sp3 C?H fluorination methods, the next rational step is to focus on directing “radical‐based fluorination” more effectively. One potential solution entails selective C?C bond activation as a prelude to selective fluorination. Herein, we report the tandem photocatalyzed ring‐opening/fluorination reactions of cyclopropanols by 1,2,4,5‐tetracyanobenzene (TCB) and Selectfluor to afford a process tantamount to site‐selective β‐fluorination of carbonyl‐containing compounds. This new approach provides a synthetically mild and operationally simple route to otherwise difficult‐to‐prepare β‐fluorinated products in good yields and with good‐to‐excellent regioselectivity. Remarkably, substrates that contain other usually reactive (e.g., benzylic) sites undergo ring‐opening fluorination preferably. The versatility of this method to give cyclic β‐fluorides from tertiary cyclopropanols and γ‐fluoro alcohols is also highlighted.  相似文献   
25.
26.
It has been established that oxidation of a mixture of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and dicyanomethane or formaldehyde with manganese dioxide gives 3-hydroxymethyl-1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, the structure of which was confirmed by X-ray structural analysis. Some oxidative conversions by potassium permanganate of the product formed and its esters have been studied. These included lactamization, aromatization, and oxodihydroxylation.  相似文献   
27.
A new semiconducting polymer based on two different electron deficient (quinoxaline and isoindigo) and electron rich (benzodithiophene) moieties is synthesized, characterized and used as donor material for photovoltaic devices. Blade‐coated bulk heterojunction solar cells are fabricated in air by using chlorinated (o‐dichlorobenzene) and nonchlorinated (o‐xylene) solvents for the deposition of the active layer. The use of o‐xylene allows a ~10% improvement of the device efficiency in comparison to the analogous system processed from o‐dichlorobenzene. In addition, the evolution of the photovoltaic parameters of the resulting devices during thermal stress is monitored and compared, demonstrating a nearly identical resistance against temperature. The reported results not only highlight the promising properties of the new polymer in terms of environmental stability and compatibility with nonhalogenated solvents, but also show an easy and ecofriendly way to further improve the device performance without altering the corresponding thermal stability. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 234–242  相似文献   
28.
One-reactor oxidation by potassium permanganate has been carried out for a series of 4-aryl- and 4-methyl-1,2,3,6-tetrahydropyridines to give 1-formylamino-substituted 3-arylpropan-3-ones and butan-3-ones. The effect has been studied of the nature of the substrate, the temperature, and interphase transfer catalysts on the yield of amino alkanone. It is proposed that the reaction proceeds through the intermediate formation of 3,4-dihydroxypiperidin-2-ones which then undergo oxidative decyclization with elimination of one carbon atom.  相似文献   
29.
The present study demonstrates photoinduced generation of superoxide radical anion and singlet oxygen upon UVA irradiation of ethyl 1,4-dihydro-8-nitro-4-oxoquinoline-3-carboxylate (DNQC), and its cytotoxic/phototoxic effects on murine leukemia L1210 cells. The formation of reactive oxygen species (ROS) was investigated by EPR spectroscopy using in situ spin trapping technique and 4-hydroxy-2,2,6,6-piperidine (TMP) for singlet oxygen ((1)O(2)) detection. The EPR spectra monitored upon photoexcitation of aerated solutions of DNQC in dimethylsulfoxide evidenced the efficient activation of molecular oxygen via Types I and II mechanisms. The cytotoxic/phototoxic effects of DNQC, analysis of cell cycle, induction of apoptosis/necrosis, DNA damage and molecular mechanism of apoptotic death of L1210 cells in dark and in the presence of UVA irradiation were compared. DNQC induced a different cytotoxic/phototoxic effect, which was concentration- and time-dependent. The four highest tested concentrations of non-photoactivated and photoactivated DNQC induced immediate cytotoxic/phototoxic effect after 24h cultivation of L1210 cells. This effect decreased with the time of treatment. The irradiation increased the sensitivity of leukemia cell line on DNQC, but the cell sensitivity decreased with time of processing. Quinolone derivative DNQC significantly induced direct DNA strand breaks in L1210 cells, which were increased with the irradiation of cells. The DNA damage generated by DNQC alone/with combination of UVA irradiation induced cell arrest in G(0)/G(1) and G(2)/M phases, decrease in the number of L1210 cells in Sphase and apoptotic cell death of certain part of cell population after 24 h of influence. DNQC alone/with combination of UVA irradiation induced apoptosis in L1210 cells through ROS-dependent mitochondrial pathway.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号