首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   0篇
  国内免费   2篇
化学   37篇
力学   2篇
数学   22篇
物理学   12篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2008年   5篇
  2006年   3篇
  2005年   5篇
  2004年   6篇
  2003年   7篇
  2002年   1篇
  2001年   2篇
  2000年   3篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1975年   1篇
  1933年   1篇
  1931年   1篇
  1928年   1篇
  1927年   1篇
  1926年   1篇
  1925年   1篇
  1923年   1篇
  1922年   1篇
  1921年   2篇
  1920年   1篇
  1919年   2篇
  1918年   4篇
  1907年   1篇
  1887年   1篇
  1885年   3篇
  1884年   1篇
  1882年   1篇
排序方式: 共有73条查询结果,搜索用时 15 毫秒
51.
Understanding of oxidative processes such as solution-phase ozonolysis in multiwalled carbon nanotubes (MWNTs) is of fundamental importance in devising applications of these tubes as components in composite materials, as well as for development of cutting and filling protocols. We present here an evaluation of various spectroscopic tools to study the structure and composition of functionalized nanotubes. We demonstrate near-edge X-ray absorption fine structure (NEXAFS) spectroscopy as a particularly useful and effective technique for studying the surface chemistry of carbon nanotubes.  相似文献   
52.
53.
Whereas the chemistry of fullerenes is well-established, the chemistry of single-walled carbon nanotubes (SWNTs) is a relatively unexplored field of research. Investigations into the bonding of moieties onto SWNTs are important because they provide fundamental structural insight into how nanoscale interactions occur. Hence, understanding SWNT chemistry becomes critical to rational, predictive manipulation of their properties. Among the strategies discussed include molecular metal complexation with SWNTs to control site-selective chemistry in these systems. In particular, work has been performed with Vaska's and Wilkinson's complexes to create functionalized adducts. Functionalization should offer a relatively simple means of tube solubilization and bundle exfoliation, and also allows for tubes to be utilized as recoverable catalyst supports. Solubilization of oxidized SWNTs has also been achieved through derivatization by using a functionalized organic crown ether. The resultant adduct yielded concentrations of dissolved nanotubes on the order of 1 g L(-1) in water and at elevated concentrations in a range of organic solvents, traditionally poor for SWNT manipulation. To further demonstrate chemical processability of SWNTs, we have subjected them to ozonolysis, followed by treatment with various independent reagents, to rationally generate a higher proportion of oxygenated functional groups on the nanotube surface. This protocol has been found to purify nanotubes. More importantly, the reaction sequence has been found to ozonize the sidewalls of these nanotubes. Finally, SWNTs have also been chemically modified with quantum dots and oxide nanocrystals. A composite heterostructure consisting of nanotubes joined to nanocrystals offers a unique opportunity to obtain desired physical, electronic, and chemical properties by adjusting synthetic conditions to tailor the size and structure of the individual sub-components, with implications for self-assembly.  相似文献   
54.
Single-crystalline BaWO(4) and BaCrO(4) nanorods of reproducible shape and of varying sizes have been controllably prepared using a simple, room-temperature approach, based on the use of porous alumina template membranes. Aligned BaWO(4) and BaCrO(4) nanorod arrays can be obtained by dissolving the template. Our facile technique, which is analogous to biomineralization, offers a promising and generalized methodology to prepare other types of free-standing ABO(4) nanorods and their corresponding nanorod arrays. Extensive characterization of these samples has been performed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDS), selected area electron diffraction (SAED), Raman spectroscopy, FT-infrared spectroscopy (FT-IR), and X-ray diffraction (XRD).  相似文献   
55.
A number of complementary, synergistic advances are reported herein. First, we describe the ‘first-time’ synthesis of ultrathin Ru2Co1 nanowires (NWs) possessing average diameters of 2.3 ± 0.5 nm using a modified surfactant-mediated protocol. Second, we utilize a combination of quantitative EDS, EDS mapping (along with accompanying line-scan profiles), and EXAFS spectroscopy results to probe the local atomic structure of not only novel Ru2Co1 NWs but also ‘control’ samples of analogous ultrathin Ru1Pt1, Au1Ag1, Pd1Pt1, and Pd1Pt9 NWs. We demonstrate that ultrathin NWs possess an atomic-level geometry that is fundamentally dependent upon their intrinsic chemical composition. In the case of the PdPt NW series, EDS mapping data are consistent with the formation of a homogeneous alloy, a finding further corroborated by EXAFS analysis. By contrast, EXAFS analysis results for both Ru1Pt1 and Ru2Co1 imply the generation of homophilic structures in which there is a strong tendency for the clustering of ‘like’ atoms; associated EDS results for Ru1Pt1 convey the same conclusion, namely the production of a heterogeneous structure. Conversely, EDS mapping data for Ru2Co1 suggests a uniform distribution of both elements. In the singular case of Au1Ag1, EDS mapping results are suggestive of a homogeneous alloy, whereas EXAFS analysis pointed to Ag segregation at the surface and an Au-rich core, within the context of a core–shell structure. These cumulative outcomes indicate that only a combined consideration of both EDS and EXAFS results can provide for an accurate representation of the local atomic structure of ultrathin NW motifs.

EDS and EXAFS spectroscopy are used as complementary techniques to investigate the local structure of bimetallic ultrathin nanowires. Results highlight the importance of using a combined approach to achieve an accurate understanding of these systems.  相似文献   
56.
We consider symmetry-breaking bifurcations at non-positive, radially symmetric solutions of semilinear elliptic equations on a ball with Dirichlet boundary conditions. For nonlinearities which are asymptotically affine linear, we find solutions at which the symmetry breaks. The kernel of the linearized equation at these solutions is an absolutely irreducible representation of the group O(n). For this kind of equation a transversality condition is satisfied if the perturbation of the affine linear problem is small enough. Thus we obtain, by the equivariant branching lemma, a large variety of isotropy subgroups of O(n) which occur as symmetries of the bifurcating solution branches.  相似文献   
57.
58.
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号