首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17491篇
  免费   2663篇
  国内免费   1925篇
化学   12583篇
晶体学   186篇
力学   1197篇
综合类   137篇
数学   2027篇
物理学   5949篇
  2024年   55篇
  2023年   333篇
  2022年   542篇
  2021年   605篇
  2020年   628篇
  2019年   662篇
  2018年   531篇
  2017年   539篇
  2016年   765篇
  2015年   762篇
  2014年   952篇
  2013年   1169篇
  2012年   1534篇
  2011年   1546篇
  2010年   1059篇
  2009年   939篇
  2008年   1084篇
  2007年   979篇
  2006年   975篇
  2005年   793篇
  2004年   600篇
  2003年   543篇
  2002年   546篇
  2001年   462篇
  2000年   343篇
  1999年   360篇
  1998年   289篇
  1997年   270篇
  1996年   300篇
  1995年   234篇
  1994年   203篇
  1993年   160篇
  1992年   171篇
  1991年   173篇
  1990年   129篇
  1989年   124篇
  1988年   81篇
  1987年   70篇
  1986年   80篇
  1985年   60篇
  1984年   54篇
  1983年   44篇
  1982年   32篇
  1981年   31篇
  1980年   29篇
  1978年   24篇
  1977年   25篇
  1976年   23篇
  1974年   20篇
  1973年   26篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
We report the unprecedented electrocatalytic activity of a series of molecular nickel thiolate complexes ( 1 – 5 ) in reducing CO2 to C1–3 hydrocarbons on carbon paper in pH-neutral aqueous solutions. Ni(mpo)2 ( 3 , mpo=2-mercaptopyridyl-N-oxide), Ni(pyS)3 ( 4 , pyS=2-mercaptopyridine), and Ni(mp)2 ( 5 , mp=2-mercaptophenolate) were found to generate C3 products from CO2 for the first time in molecular complex. Compound 5 exhibits Faradaic efficiencies (FEs) of 10.6 %, 7.2 %, 8.2 % for C1, C2, C3 hydrocarbons respectively at −1.0 V versus the reversible hydrogen electrode. Addition of CO to the system significantly promotes the FEC1–C3 to 41.1 %, suggesting that a key Ni−CO intermediate is associated with catalysis. A variety of spectroscopies have been performed to show that the structures of nickel complexes remain intact during CO2 reduction.  相似文献   
992.
The anode-cathode interplay is an important but rarely considered factor that initiates the degradation of aqueous zinc ion batteries (AZIBs). Herein, to address the limited cyclability issue of V-based AZIBs, Al2(SO4)3 is proposed as decent electrolyte additive to manipulate OH-mediated cross-communication between Zn anode and NaV3O8 ⋅ 1.5H2O (NVO) cathode. The hydrolysis of Al3+ creates a pH≈0.9 strong acidic environment, which unexpectedly prolongs the anode lifespan from 200 to 1000 h. Such impressive improvement is assigned to the alleviation of interfacial OH accumulation by Al3+ adsorption and solid electrolyte interphase formation. Accordingly, the strongly acidified electrolyte, associated with the sedated crossover of anodic OH toward NVO, remarkably mitigate its undesired dissolution and phase transition. The interrupted OH-mediated communication between the two electrodes endows Zn||NVO batteries with superb cycling stability, at both low and high scan rates.  相似文献   
993.
It is challenging to achieve stable and efficient radical emissions under ambient conditions. Herein, we present a rational design strategy to protect photoinduced carbonyl free radical emission through electrostatic interaction and spin delocalization effects. The host-guest system is constructed from tricarbonyl-substituted benzene molecules and a series of imidazolium ionic liquids as the guest and host, respectively, whereby the carbonyl anion radical emission can be in situ generated under the light irradiation and further stabilized by electrostatic interaction. More importantly, the anion species and the alkyl chain length of imidazolium ionic liquids show a noticeable effect on luminescence efficiency, with the highest radical emission efficiency is as high as 53.3 % after optimizing the imidazole ionic liquid's structure, which is about four times higher than the polymer-protected radical system. Theoretical calculations confirm the synergistic effect of strong electrostatic interactions and that the spin delocalization effect significantly stabilizes the radical emission. Moreover, such a radical emission system also could be integrated with a fluorescent dye to induce multi-color or even white light emission with reversible temperature-responsive characteristics. The radical emission system can also be used to detect different amine compounds on the basis of the emission changes and photoactivation time.  相似文献   
994.
Protein coronas are present extensively at the bio-nano interface due to the natural adsorption of proteins onto nanomaterials in biological fluids. Aside from the robust property of nanoparticles, the dynamics of the protein corona shell largely define their chemical identity by altering interface properties. However, the soft coronas are normally complex and rapidly changing. To real-time monitor the entire formation, we report here a self-regulated electrochemiluminescence (ECL) microscopy based on the interaction of the Ru(bpy)33+ with the nanoparticle surface. Thus, the heterogeneity of the protein corona is in situ observed in single nanoparticle “cores” before and after loading drugs in nanomedicine carriers. The label-free, optical stable and dynamic ECL microscopy minimize misinterpretations caused by the variation of nanoparticle size and polydispersity. Accordingly, the synergetic actions of proteins and nanoparticles properties are uncovered by chemically engineered protein corona. After comparing the protein corona formation kinetics in different complex systems and different nanomedicine carriers, the universality and accuracy of this technique were well demonstrated via the protein corona formation kinetics curves regulated by competitive adsorption of Ru(bpy)33+ and multiple proteins on surface of various carriers. The work is of great significance for studying bio-nano interface in drug delivery and targeted cancer treatment.  相似文献   
995.
The migration of ions is known to be associated with various detrimental phenomena, including current density-voltage hysteresis, phase segregation, etc., which significantly limit the stability and performance of perovskite solar cells, impeding their progress toward commercial applications. To address these challenges, we propose incorporating a polymerizable organic small molecule monomer, N-carbamoyl-2-propan-2-ylpent-4-enamide (Apronal), into the perovskite film to form a crosslinked polymer (P-Apronal) through thermal crosslinking. The carbonyl and amino groups in Apronal effectively interact with shallow defects, such as uncoordinated Pb2+ and iodide vacancies, leading to the formation of high-quality films with enhanced crystallinity and reduced lattice strain. Furthermore, the introduction of P-Apronal improves energy level alignment, and facilitates charge carrier extraction and transport, resulting in a champion efficiency of 25.09 %. Importantly, P-Apronal can effectively suppress the migration of I ions and improve the long-term stability of the devices. The present strategy sets forth a path to attain long-term stability and enhanced efficiency in perovskite solar cells.  相似文献   
996.
The design and synthesis of a phenoxazine-based metal-organic tetrahedro n(Zn_4L_4) as biomimetic lectin for selectively recognition of glucosamine(GlcN) was reported.Different from the free phenoxazinebased ligand(L),Zn_4L_4 displayed the highest fluorescent intensity enhancement efficiency toward GlcN over other related natural mono-and disaccharides.Fluorescence titration demonstrated a 1:1 stoichiometric host-guest complex was formed with an association constant about 4.03 × 10~4 L/mol.~1H NMR spectroscopic studies confirmed this selectivity resulted from the multiple hydrogen bonding interactions formed between GlcN and Zn_4L_4.The present results suggested that rational arrangement of recognition sites in the confined space of metal-organic cage is crucial for the selectivity toward target guests.  相似文献   
997.
In this study, ultrasonic-assisted cellulase extraction (UCE) was applied to extract flavonoids and polyphenols from the Nymphaea hybrid flower. The extraction conditions were optimized using the response surface method (RSM) coupled with a Box-Behnken design. The crude extract of Nymphaea hybrid (NHE) was further purified using AB-8 macroporous resins, and the purified extract (NHEP) was characterized by FTIR and HPLC. In vitro activity determination by chemical method showed that NHEP displayed strong free radical scavenging abilities against the DPPH and ABTS radicals, good reduction power, and hyaluronidase inhibition. The cell viability by CCK-8 assays showed that NHEP had no significant cytotoxicity for B16 and HaCaT cells when the concentration was below 100 μg/mL and 120 μg/mL, respectively. NHEP with a concentration of 20–160 μg/mL can more effectively reduce the ROS level in H2O2 damaged HaCaT cells compared with 10 μg/mL of VC. The 40 μg/mL of NHEP had similar activity against intracellular melanin production in the B16 melanoma cells compared with 20 μg/mL Kojic acid. Good activities of antioxidation, whitening and protective effect against H2O2-induced oxidative damage promote the potential for NHEP as a functional raw material in the field of cosmetics and medicine.  相似文献   
998.
Curcumin is the most important active component in turmeric extracts. Curcumin, a natural monomer from plants has received a considerable attention as a dietary supplement, exhibiting evident activity in a wide range of human pathological conditions. In general, curcumin is beneficial to human health, demonstrating pharmacological activities of anti-inflammation and antioxidation, as well as antitumor and immune regulation activities. Curcumin also presents therapeutic potential in neurodegenerative, cardiovascular and cerebrovascular diseases. In this review article, we summarize the advancements made in recent years with respect to curcumin as a biologically active agent in malignant tumors, Alzheimer’s disease (AD), hematological diseases and viral infectious diseases. We also focus on problems associated with curcumin from basic research to clinical translation, such as its low solubility, leading to poor bioavailability, as well as the controversy surrounding the association between curcumin purity and effect. Through a review and summary of the clinical research on curcumin and case reports of adverse effects, we found that the clinical transformation of curcumin is not successful, and excessive intake of curcumin may have adverse effects on the kidneys, heart, liver, blood and immune system, which leads us to warn that curcumin has a long way to go from basic research to application transformation.  相似文献   
999.
MicroRNAs (miRNAs) broadly regulate normal biological functions of bone and the progression of fracture healing and osteoporosis. Recently, it has been reported that miR-1224-5p in fracture plasma is a potential therapy for osteogenesis. To investigate the roles of miR-1224-5p and the Rap1 signaling pathway in fracture healing and osteoporosis development and progression, we used BMMs, BMSCs, and skull osteoblast precursor cells for in vitro osteogenesis and osteoclastogenesis studies. Osteoblastogenesis and osteoclastogenesis were detected by ALP, ARS, and TRAP staining and bone slice resorption pit assays. The miR-1224-5p target gene was assessed by siRNA-mediated target gene knockdown and luciferase reporter assays. To explore the Rap1 pathway, we performed high-throughput sequencing, western blotting, RT-PCR, chromatin immunoprecipitation assays and immunohistochemical staining. In vivo, bone healing was judged by the cortical femoral defect, cranial bone defect and femoral fracture models. Progression of osteoporosis was evaluated by an ovariectomy model and an aged osteoporosis model. We discovered that the expression of miR-1224-5p was positively correlated with fracture healing progression. Moreover, in vitro, overexpression of miR-1224-5p slowed Rankl-induced osteoclast differentiation and promoted osteoblast differentiation via the Rap1-signaling pathway by targeting ADCY2. In addition, in vivo overexpression of miR-1224-5p significantly promoted fracture healing and ameliorated the progression of osteoporosis caused by estrogen deficiency or aging. Furthermore, knockdown of miRNA-1224-5p inhibited bone regeneration in mice and accelerated the progression of osteoporosis in elderly mice. Taken together, these results identify miR-1224-5p as a key bone osteogenic regulator, which may be a potential therapeutic target for osteoporosis and fracture nonunion.Subject terms: Translational research, Cell signalling  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号