首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4373篇
  免费   813篇
  国内免费   490篇
化学   3312篇
晶体学   40篇
力学   215篇
综合类   44篇
数学   483篇
物理学   1582篇
  2024年   5篇
  2023年   74篇
  2022年   127篇
  2021年   123篇
  2020年   176篇
  2019年   193篇
  2018年   154篇
  2017年   125篇
  2016年   236篇
  2015年   201篇
  2014年   254篇
  2013年   299篇
  2012年   362篇
  2011年   366篇
  2010年   271篇
  2009年   291篇
  2008年   307篇
  2007年   268篇
  2006年   254篇
  2005年   223篇
  2004年   163篇
  2003年   143篇
  2002年   181篇
  2001年   152篇
  2000年   92篇
  1999年   103篇
  1998年   64篇
  1997年   60篇
  1996年   70篇
  1995年   43篇
  1994年   56篇
  1993年   32篇
  1992年   20篇
  1991年   42篇
  1990年   37篇
  1989年   29篇
  1988年   12篇
  1987年   12篇
  1986年   11篇
  1985年   19篇
  1984年   6篇
  1983年   6篇
  1982年   3篇
  1981年   5篇
  1970年   1篇
  1966年   1篇
  1964年   1篇
  1962年   1篇
  1959年   1篇
  1936年   1篇
排序方式: 共有5676条查询结果,搜索用时 312 毫秒
231.
Controllable doping is an effective way of tuning the properties of semiconductor nanocrystals (NCs). In this work, a simple strategy of fast doping Cu ions into ZnSe NCs under ambient conditions was proposed. The principle of doping is based on hydrazine (N2H4) promoted cation exchange reaction. By direct addition of Cu ion stock solution into the preformed ZnSe NCs, Cu doped ZnSe NCs can be obtained. Furthermore, the emission of doped NCs can be tuned by changing the amount of impurity ion addition. The cation exchange reaction is facilitated by three factors: 1) N2H4 addition, 2) fast impurity ions, and 3) partial stabilizer removal. The proposed cation exchange reaction in aqueous solution could be an alternate route for NC doping as well as synthesis of ionic NCs.  相似文献   
232.
1,5‐Daminotetrazole (DAT) is of much interest because of the practical significance and the diversity of characteristics. The study on the decomposition pathway and the kinetics of DAT has been performed based on the quantum chemistry theory. The minimum energy path (MEP) calculation has shown that NH2N3 and NH2CN are the initially detected products of DAT. And the structures of reactant, products and transition state were optimized with MP2 methods using 6‐311G** basis sets, and the energies were refined using CCSD(T)/6‐311G** levels of theory. The calculated rate constants were obtained using the conventional transition‐state theory (TST) and the canonical variational transition‐state theory (CVT) methods. The calculation results indicated that the energy barrier of decomposition reaction is 47.98 kcal mol?1 and the variational effect is small. In addition, the rate constants and the Arrhenius experience formula of DAT decomposition have been obtained between 200 and 2500 K temperature regions. The fitted three‐parameter expressions calculated using the TST and CVT methods are (TST) and (CVT). This work may provide the theoretical support for further experimental synthesis and testing. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
233.
A rare heterometallic cluster-based polymer [Cu4(Hbhea)4(μ 2-OCH3) K(CH3OH))] n ·(H2O) n (1) (H3bhea = 2-[bis-(2-hydroxy-ethyl)-amino]-ethanesulfonic acid), has been synthesized and structurally determined by single crystal X-ray diffraction, elemental analysis. Crystallographic unit of 1 consists of four Cu(II), four Hbhea ligands, one methanol molecule, one methanol anion, one K ion and one crystal lattice water and formed anion cluster [Cu4(Hbhea)4(CH3O)]? which further constructed a 3-D polymer by linking the six-coordination K ions.  相似文献   
234.
A facile method for the large‐scale synthesis of SnO2 nanocrystal/graphene composites by using coarse metallic Sn particles and cheap graphite oxide (GO) as raw materials is demonstrated. This method uses simple ball milling to realize a mechanochemical reaction between Sn particles and GO. After the reaction, the initial coarse Sn particles with sizes of 3–30 μm are converted to SnO2 nanocrystals (approximately 4 nm) while GO is reduced to graphene. Composite with different grinding times (1 h 20 min, 2 h 20 min or 8 h 20 min, abbreviated to 1, 2 or 8 h below) and raw material ratios (Sn:GO, 1:2, 1:1, 2:1, w/w) are investigated by X‐ray diffraction, X‐ray photoelectron spectroscopy, field‐emission scanning electron microscopy and transmission electron microscopy. The as‐prepared SnO2/graphene composite with a grinding time of 8 h and raw material ratio of 1:1 forms micrometer‐sized architected chips composed of composite sheets, and demonstrates a high tap density of 1.53 g cm?3. By using such composites as anode material for LIBs, a high specific capacity of 891 mA h g?1 is achieved even after 50 cycles at 100 mA g?1.  相似文献   
235.
236.
The doping of carbon quantum dots with nitrogen provides a promising direction to improve fluorescence performance and broaden their applications in sensing systems. Herein we report a one‐pot solvothermal synthesis of N‐doped carbon quantum dots (NCQDs) and the synthesis of a series of NCQDs with different nitrogen contents. The as‐prepared NCQDs were compared with carbon quantum dots (CQDs); the introduction of nitrogen atoms largely increased the quantum yield of NCQDs and highest emission efficiency is up to 36.3 %. The fluorescence enhancement may originate from more polyaromatic structures induced by incorporated nitrogen atoms and protonation of nitrogen atoms on dots. It was found that NCQDs can act as a multifunctional fluorescence sensing platform because they can be used to detect pH values, AgI, and FeIII in aqueous solution. The fluorescence intensity of NCQDs is inversely proportional to pH values across a broad range from 5.0 to 13.5, which indicates that NCQDs can be devised as an effective pH indicator. Selective detection of AgI and FeIII was achieved based on their distinctive fluorescence influence because AgI can significantly enhance the fluorescence whereas FeIII can greatly quench the fluorescence. The quantitative determination of AgI can be accomplished with NCQDs by using the linear relationship between fluorescence intensity of NCQDs and concentration of AgI. The sensitive detection of H2O2 was developed by taking advantage of the distinct quenching ability of FeIII and FeII toward the fluorescence of NCQDs. Cellular toxicity test showed NCQDs still retain low toxicity to cells despite the introduction of a great deal of nitrogen atoms. Moreover, bioimaging experiments demonstrated that NCQDs have stronger resistance to photobleaching than CQDs and more excellent fluorescence labeling performance.  相似文献   
237.
A common bridging ligand, 3,3′,5,5′‐tetrakis(N‐methylbenzimidazol‐2‐yl)biphenyl, and four terpyridine terminal ligands with various substituents (amine, tolyl, nitro, and ester groups) have been used to synthesize ten cyclometalated diruthenium complexes 1 2+– 10 2+. Among them, compounds 1 2+– 6 2+ are redox nonsymmetric, and others are symmetric. These complexes show two RuIII/II processes and an intervalence charge transfer (IVCT) transition in the one‐electron oxidized state. The potential separation (ΔE) of 1 2+– 10 2+ has been correlated to the energy difference ΔG0, the energy of the IVCT band Eop, and the ground‐state delocalization coefficient α2. Time‐dependent (TD)DFT calculations suggest that the absorptions in the visible region of 1 2+– 6 2+ are mainly associated with the metal‐to‐ligand charge‐transfer transitions from both ruthenium ions and to both terminal ligands and the bridging ligand. However, the energies of these transitions vary significantly. DFT calculations have been performed on 1 2+– 6 2+ and 1 3+– 6 3+ to give information on the electronic structures and spin populations of the mixed‐valent compounds. The TDDFT‐predicted IVCT excitations reproduce well the experimental trends in transition energies. In addition, three monoruthenium complexes have been synthesized for a comparison study.  相似文献   
238.
Monoamine 1 , diamines 2 – 4 , triamine 5 , and tetraamine 6 have been synthesized by substituting dianisylamino groups at the 1‐, 3‐, 6‐, and/or 8‐positions of pyrene. Diamines 2 – 4 differ in the positions of the amine substituents. No pyrene–pyrene interactions are evident in the single‐crystal packing of 3 , 4 , and 6 . With increasing numbers of amine substituents, the first oxidation potential decreases progressively from the mono‐ to the tetraamine. These compounds show intense charge‐transfer (CT) emission in CH2Cl2 at around 530 nm with quantum yields of 48–68 %. Upon stepwise oxidation by electrolysis or chemical oxidation, these compounds were transformed into radical cations 1 ?+– 6 ?+ and dications 2 2+– 6 2+, which feature strong visible and near‐infrared absorptions. Time‐dependent density functional theory studies suggested the presence of localized transitions from the pyrene radical cation and aminium radical cation, intervalence CT, and CT between the pyrene and amine moieties. Spectroscopic studies indicated that these radical cations and dications have good stability. Triamine 5 and tetraamine 6 formed efficient CT complexes with tetracyanoquinodimethane in solution. The results of EPR spectroscopy and density functional theory calculations suggested that the dications 2 2+– 4 2+ have a triplet ground state, whereas 5 2+ and 6 2+ have a singlet ground state. The dication of 1,3‐disubstituted diamine 4 exhibits a strong EPR signal.  相似文献   
239.
A silver‐catalyzed decarboxylative trifluoromethylthiolation of secondary and tertiary carboxylic acids under mild conditions tolerates a wide range of functional groups. The reaction was dramatically accelerated by its performance in an aqueous emulsion, which was formed by the addition of sodium dodecyl sulfate to water. It was proposed that the radical, which was generated from the silver‐catalyzed decarboxylation in the “oil‐in‐water” droplets, could easily react with the trifluoromethylthiolating reagent to form the product.  相似文献   
240.
BRCTs are phosphoserine‐binding domains found in proteins involved in DNA repair, DNA damage response and cell cycle regulation. BRCA1 is a BRCT domain‐containing, tumor‐suppressing protein expressed in the cells of breast and other human tissues. Mutations in BRCA1 have been found in ca. 50 % of hereditary breast cancers. Cell‐permeable, small‐molecule BRCA1 inhibitors are promising anticancer agents, but are not available currently. Herein, with the assist of microarray‐based platforms, we have discovered the first cell‐permeable protein–protein interaction (PPI) inhibitors against BRCA1. By targeting the (BRCT)2 domain, we showed compound 15 a and its prodrug 15 b inhibited BRCA1 activities in tumor cells, sensitized these cells to ionizing radiation‐induced apoptosis, and showed synergistic inhibitory effect when used in combination with Olaparib (a small‐molecule inhibitor of poly‐ADP‐ribose polymerase) and Etoposide (a small‐molecule inhibitor of topoisomerase II). Unlike previously reported peptide‐based PPI inhibitors of BRCA1, our compounds are small‐molecule‐like and could be directly administered to tumor cells, thus making them useful for future studies of BRCA1/PARP‐related pathways in DNA damage and repair response, and in cancer therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号