首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
化学   18篇
力学   2篇
物理学   7篇
  2022年   1篇
  2020年   1篇
  2018年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2003年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
11.
Simple mixing of an atom transfer radical polymerization (ATRP) mixture with zinc powder was demonstrated to result in rapid decolorizing of the solution and precipitation of elemental copper, using small amounts of silica gel as seeding material. The experiments revealed that the chemical reduction of copper by wetted zinc powder (i.e., 0.325 g/mmol copper) is fast and completed within less than 5 min. UV spectra of the filtered polymer solution showed no any trace of copper. Terminal bromoalkyl groups of the polymers in the ATRP solution were determined to be unchanged by short‐term contact with zinc powder at room temperature and a nearly complete reductive dehalogenation takes place only after 24 h of interaction, as evidenced by reaction of elemental zinc with a model compound, ethyl bromoacetate. Indeed, poly(methyl methacrylate) (PMMA) sample (Mn: 7900, polydispersity index: 1.09) isolated from ATRP mixture after the copper removal a by short contact with zinc powder (i.e., 15 min) was determined “still living” as confirmed by chain extension with styrene, ethyl acrylate, and t‐butyl acrylate monomers to give block copolymers. The presence of acetic acid was demonstrated to accelerate reductive dehalogenation of PMMA end‐groups by zinc and yields nonliving polymer within 2 h. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   
12.
There are many studies to improve the properties of Cu–Al–Mn shape memory alloys, such as high transformation temperatures, ductility and workability. Most of them have been performed by adding a quaternary component to the alloy. In this study, the effect of trace Mg addition on transformation temperatures and microstructures of three different quaternary Cu–Al–Mn–Mg alloys has been investigated using thermal analysis, optical microscopy and XRD techniques. The transformation temperatures are within the range of 120–180 °C, and they have not changed significantly on decreasing the Mn content, replacing with Mg. The fine precipitates have been observed in the alloys with the Mg content up to 1.64 at%. Calculated entropy change and XRD analysis reveal that the alloys with high Al content have mainly 18R-type structure which could be responsible for good ductility and workability.  相似文献   
13.
Cu–Al–Ni shape memory alloys are good candidates for high temperature applications. We have investigated the effects of alloying elements on transformation temperatures, heat-capacity values, and structural properties of Cu–13.73Al–4.3Ni and Cu–13Al–4.3Ni (wt%) shape memory alloys. The evolution of the transformation temperatures was studied by differential scanning calorimetry with different heating/cooling rates. The heat-capacity measurements of the samples were made. It was found that the mass percentage of the alloying element has an important effect on the characteristic transformation temperatures and thermodynamic parameters. The structural changes of the samples were studied by X-ray diffraction measurements and optical microscope observations at room temperature. It is evaluated that the transformation parameters of CuAlNi shape memory alloy can be controlled by the change of the mass percentages of the alloying elements.  相似文献   
14.
This study deals with the identification of a title compound, 3-[(2-morpholinoethylimino)methyl]benzene-1,2-diol by means of quantum chemical calculations. The optimized molecular structures, vibrational frequencies and corresponding vibrational assignments, thermodynamic properties, charge analyses, nuclear magnetic resonance (NMR) chemical shifts and ultraviolet-visible (UV-vis) spectra of the title molecule in the ground state were evaluated using density functional theory (DFT) with the standard B3LYP/6-311++G(d,p) method and basis set combination for the first time. Theoretical vibrational spectra of the title compound were interpreted with the aid of normal coordinate analysis based on scaled density functional force field. The results show that the obtained optimized geometric parameters (bond lengths, bond angles and bond dihedrals) and vibrational frequencies were observed to be in good agreement with the available experimental results. Moreover, the calculations of the electronic spectra, (13)C and (1)H chemical shifts were compared with the experimental ones. Furthermore, we not only simulated the frontier molecular orbitals (FMO) and molecular electrostatic potential (MEP) but also determined the transition states and energy band gaps, as well. It was found that charge analyses supported the evidences of MEP. Infrared intensities and Raman activities were also reported.  相似文献   
15.
16.
Journal of Fluorescence - A propylimidazole functionalized coumarin derivative (IPC) was fabricated for the first time and applied as a dual responsive fluorescent chemoprobe for sensitive and...  相似文献   
17.
18.
A novel method for preparing organosoluble and conducting polyaniline (PANI) is presented. It is demonstrated that Cu(II) is an excellent catalyst for the polymerization of aniline by air oxygen in aqueous emulsions. Reactions carried out at 0 °C or at room temperature yield PANIs of reasonably high molecular weights (number‐average molecular weight = 23,000–114,000 Da) in an emeraldine base form that are soluble in many organic solvents, such as tetrahydrofuran, dimethylformamide, N‐methylpyrrolidinone, chloroform, and acetone. Spectroscopic investigations (ultraviolet, Fourier transform infrared, and 1H NMR) have shown that PANI obtained by this procedure has the same structure as those prepared by the conventional persulfate oxidation method. The resulting PANIs show reasonable electronic conductivities (0.067–0.320 S cm?1) upon doping with p‐toluenesulfonic acid or dodecyl benzene sulfonic acid. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6025–6031, 2006  相似文献   
19.
Journal of Thermal Analysis and Calorimetry - The microencapsulated myristic acid with titanium dioxide (TiO2) shell as shape-stabilized thermal energy storage materials was prepared using...  相似文献   
20.
In this study, we investigated the effect of water soluble ligands [i.e., sodium borohydride (NaBH4), polyvinyl alcohol, glucose and galactose] on the preparation of nano-silver-supported activated carbon (AC). Ligand-stabilized Ag nanoparticle dispersion characteristics were also compared with those of ligand-free Ag nanoparticles. The nanoparticle distribution was investigated using a scanning electron microscope (SEM) which enabled a qualitative analysis of ligand-dependent nanoparticle adsorption onto AC. Silver nanoparticles with average sizes ranging from 7 to 20 nm were synthesized with different coatings. In particular, silver nanoparticles reduced and stabilized by NaBH4 were found to have a dense and homogenous dispersion of sizes in the range of 100–400 nm on the AC surface. These particles also seemed to remain on the AC surface after rinsing with water. The distribution of silver nanoparticles prepared in the presence of NaBH4/PVA was not as good as the one prepared with NaBH4. Their aggregate size varied from 300 to 600 nm on the AC surface and particles greater than 500 nm were eliminated from the AC surface upon rinsing with water. Glucose- and galactose-stabilized silver nanoparticles did not display an extensive adsorption and their adsorption seemed to be poor. However, glucose-stabilized silver nanoparticles could still be detectable to some extent after rinsing, while galactose-stabilized ones could not. Antimicrobial studies showed that all silver-containing carbons studied in this study inhibit bacterial growth and act as bacteriostatic agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号