首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
化学   25篇
力学   3篇
物理学   4篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   4篇
  2009年   4篇
  2008年   2篇
  2005年   1篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1993年   1篇
  1991年   2篇
  1987年   2篇
  1986年   1篇
  1978年   1篇
  1977年   1篇
  1973年   2篇
  1972年   1篇
  1970年   1篇
排序方式: 共有32条查询结果,搜索用时 265 毫秒
11.
Hydrophilic silica particles need to be hydrophobized to be encapsulated in a polymeric environment, which can be achieved by different methods. We report on the relationship between different hydrophobization techniques of silica and the final structure of poly(methyl methacrylate)/silica hybrid nanoparticles obtained by miniemulsion polymerization. Hydrophobization by cetyltrimethylammonium chloride (CTMA-Cl) uses the ionic interaction between the positively charged ammonium salt and the negatively charged silica surface, as shown by isothermal titration calorimetry. In this case, the interaction between polymer and silica surface needs to be enhanced, so 4-vinylpyridine (4-VP) was used as a co-monomer. Alternatively, the condensation reactions of 3-methacryloxypropyltrimethoxysilane (MPS) and octadecyltrimethoxysilane (ODTMS) were used to provide a covalent bond to the silica surface. The condensation reaction of the trimethoxysilane groups onto the silica surface was proven by Fourier transform infrared spectroscopy and thermogravimetric analysis. Hybrid nanoparticles were successfully formed with silica particles functionalized with the different functionalization agents. However, the structure of the resulting hybrid particles (i.e., the distribution of the silica particles within the polymer matrix) depends on the agent. The MPS-functionalized silica particles copolymerize with poly(methyl methacrylate), leading to a fixation of the silica particles inside the polymer and to a homogeneous distribution. The CTMA-Cl- and ODTMS-functionalized silica particles cannot copolymerize, but aggregate at the interface, leading to a Janus-like structure.  相似文献   
12.
13.
14.
Terephthalate and Fricke dosimetry have been carried out to determine the sonolytic energy yields of the OH free radical and of its recombination product H2O2 in aqueous solutions under various operating conditions (nature of operating gas, power, frequency, temperature). For example, in the sonolysis of Ar-saturated terephthalate solutions at room temperature, a frequency of 321 kHz, and a power of 170 W kg-1, the total yield [G(.OH) + 2 G(H2O2)], equals 16 x 10(-10) mol J-1. This represents the total of .OH that reach the liquid phase from gas phase of the cavitating bubble. The higher the solute concentration, the lower the H2O2 production as more of the OH free radicals are scavenged, in competition with their recombination. Fricke dosimetry, in the absence and presence of Cu2+ ions, shows that the yield of H atom reaching the liquid phase is much lower, with G(H.) of the order of 3 x 10(-10) mol J-1. These sonolytic yields are smaller in solutions that are at the point of gas saturation, and increase to an optimum as the initial sonication-induced degassing and effervescence subsides. The probing of the sonic field has shown that the rate of sonolytic free-radical formation may vary across the sonicated volume depending on frequency and power input.  相似文献   
15.
Pendant drop and buoyant bubble methods have been used to study the surface characteristics of alkyl amines at the water/air surface. The investigated alkyl amines, triethylamine and octylamine, showed unusual changes in the surface tension as a function of time: an initially steep drop and a subsequent steady increase in the surface tension until a value close to the one of the pure water/air system was observed. This phenomenon is explained by the evaporation of the alkyl amines, for which several sets of experiments have been conducted with the pendant drop and buoyant bubble methods. Using an appropriate experimental protocol, the equilibrium adsorption behaviour of the two amines can be quantitatively measured.  相似文献   
16.
17.
In most applications, nanoparticles are required to be in a well-dispersed state prior to commercialisation. Conventional technology for dispersing particles into liquids, however, usually is not sufficient, since the nanoparticles tend to form very strong agglomerates requiring extremely high specific energy inputs in order to overcome the adhesive forces. Besides conventional systems as stirred media mills, ultrasound is one means to de-agglomerate nanoparticles in aqueous dispersions. In spite of several publications on ultrasound emulsification there is insufficient knowledge on the de-agglomeration of nanoparticulate systems in dispersions and their main parameters of influence. Aqueous suspensions of SiO2-particles were stressed up to specific energies EV of 10(4) kJ/m3 using ultrasound. Ultrasonic de-agglomeration of nanoparticles in aqueous solution is considered to be mainly a result of cavitation. Both hydrostatic pressure of the medium and the acoustic amplitude of the sound wave affect the intensity of cavitation. Furthermore, the presence of gas in the dispersion medium influences cavitation intensity and thus the effectiveness of the de-agglomeration process. In this contribution both, the influence of these parameters on the result of dispersion and the relation to the specific energy input are taken into account. For this, ultrasound experiments were carried out at different hydrostatic pressure levels (up to 10 bars) and amplitude values (64-123 microm). Depending on the optimisation target (time, energy input,...) different parameters limit the dispersion efficiency and result. All experimental results can be explained with the specific energy input that is a function of the primary input parameters of the process.  相似文献   
18.
Sonolysis of aqueous 4-nitrophenol at low and high pH   总被引:11,自引:0,他引:11  
The sonolysis of 4-nitrophenol in argon-saturated aqueous solution has been studied at 321 kHz. In order to evaluate separately the effect of OH radicals that are formed in the cavitational bubble and part of which react in the aqueous phase with this substrate, radiolytic studies in N2O-saturated solutions were carried out for comparison. A detailed product study of the sonolysis of 4-nitrophenol solutions shows that at pH 10, where 4-nitrophenol is deprotonated (pKa = 7.1), its sonolytic degradation is fully accounted for by OH-radical-induced reactions in the aqueous phase. At this pH, the sonolytic yield of H2O2 resulting from OH radical recombination in the solution, measured as a function of the 4-nitrophenol concentration, is reduced in line with the scavenging capacity of the 4-nitrophenolate. In contrast, at pH 4 the formation of H2O2 is already fully suppressed when the solution is 7 x 10(-4) mol dm-3 in 4-nitrophenol, and oxidative-pyrolytic degradation predominates, as exemplified by the large yields of CO and CO2 which are accompanied by a large H2 yield. The basis of this difference in behavior is a hydrophobic enrichment of 4-nitrophenol (which is undissociated at pH 4) at the interface of the cavitational bubble by a factor of about 80. The pH dependence of the yields of the pyrolytic products reflects the hydrolytic equilibrium concentration of 4-nitrophenol. The paper also demonstrates that the complexity of this sonochemical system precludes its use a gauge to determine the temperature in the interior of the cavitational bubble.  相似文献   
19.
Lewis acid‐base adducts of the general type R2Zn(4‐tBuPy)x (R = Me 1 , iPr 2 , tBu 3 , Cp* 4 ; x = 1, 2) were obtained in high yields from reactions of ZnR2 with the Lewis base 4‐tBu‐Pyridine. Compounds 1 – 4 were characterized by multinuclear NMR (1H, 13C) and IR spectroscopy and elemental analyses, 1 and 4 also by X‐ray diffraction at single crystals.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号