全文获取类型
收费全文 | 660030篇 |
免费 | 6975篇 |
国内免费 | 1991篇 |
专业分类
化学 | 342895篇 |
晶体学 | 9926篇 |
力学 | 30547篇 |
综合类 | 20篇 |
数学 | 81720篇 |
物理学 | 203888篇 |
出版年
2021年 | 5798篇 |
2020年 | 6336篇 |
2019年 | 6933篇 |
2018年 | 9134篇 |
2017年 | 9189篇 |
2016年 | 13527篇 |
2015年 | 8296篇 |
2014年 | 13125篇 |
2013年 | 31100篇 |
2012年 | 23788篇 |
2011年 | 29009篇 |
2010年 | 20844篇 |
2009年 | 20640篇 |
2008年 | 26410篇 |
2007年 | 26298篇 |
2006年 | 24240篇 |
2005年 | 21404篇 |
2004年 | 20034篇 |
2003年 | 17658篇 |
2002年 | 17668篇 |
2001年 | 19984篇 |
2000年 | 15150篇 |
1999年 | 11916篇 |
1998年 | 9959篇 |
1997年 | 9612篇 |
1996年 | 9178篇 |
1995年 | 8101篇 |
1994年 | 8082篇 |
1993年 | 7789篇 |
1992年 | 8585篇 |
1991年 | 8817篇 |
1990年 | 8443篇 |
1989年 | 8192篇 |
1988年 | 8041篇 |
1987年 | 8015篇 |
1986年 | 7583篇 |
1985年 | 9789篇 |
1984年 | 9987篇 |
1983年 | 8088篇 |
1982年 | 8255篇 |
1981年 | 8020篇 |
1980年 | 7594篇 |
1979年 | 8220篇 |
1978年 | 8335篇 |
1977年 | 8225篇 |
1976年 | 8153篇 |
1975年 | 7672篇 |
1974年 | 7570篇 |
1973年 | 7552篇 |
1972年 | 5376篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
K. Madhavan B. S. R. Reddy 《Journal of polymer science. Part A, Polymer chemistry》2006,44(9):2980-2989
A series of poly(dimethylsiloxane‐urethane) elastomers based on hexamethylenediisocyanate, toluenediisocyanate, or 4,4′‐methylenediphenyldiisocyanate hard segment and polydimethylsiloxane (PDMS) soft segment were synthesized. In this study, a new type of soft‐segmented PDMS crosslinker was synthesized by hydrosilylation reaction of 2‐allyloxyethanol with polyhydromethylsiloxane, using Karstedt's catalyst. The synthesized soft‐segmented crosslinker was characterized by FT‐IR, 1H, and 13C NMR spectroscopic techniques. The mechanical and thermal properties of elastomers were characterized using tensile testing, thermogravimetric analysis, differential scanning calorimetry (DSC), and dynamical mechanical analysis measurements. The molecular structure of poly(dimethylsiloxane‐urethane) membranes was characterized by ATR‐FTIR spectroscopic techniques. Infrared spectra indicated the formation of urethane/urea aggregates and hydrogen bonding between the hard and soft domains. Better mechanical and thermal properties of the elastomers were observed. The restriction of chain mobility has been shown by the formation of hydrogen bonding in the soft and hard segment domains, resulting in the increase in the glass‐transition temperature of soft segments. DSC analysis indicates the phase separation of the hard and soft domains. The storage modulus (E′) of the elastomers was increasing with increase in the number of urethane connections between the hard and soft segments. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2980–2989, 2006 相似文献
992.
Jorge F. J. Coelho Ana M. F. P. Silva Anatoliy V. Popov Virgil Percec Mariana V. Abreu Pedro M. O. F. Gonalves M. H. Gil 《Journal of polymer science. Part A, Polymer chemistry》2006,44(9):3001-3008
The synthesis of a block copolymer poly(vinyl chloride)‐b‐poly(n‐butyl acrylate)‐b‐poly(vinyl chloride) is reported. This new material was synthesized by single‐electron‐transfer/degenerative‐chain‐transfer‐mediated living radical polymerization (SET‐DTLRP) in two steps. First, a bifunctional macroinitiator of α,ω‐di(iodo)poly (butyl acrylate) [α,ω‐di(iodo)PBA] was synthesized by SET‐DTLRP in water at 25 °C. The macroinitiator was further reinitiated by SET‐DTLRP, leading to the formation of the desired product. This ABA block copolymer was synthesized with high initiator efficiency. The kinetics of the copolymerization reaction was studied for two PBA macroinitiators with number–average molecular weight of 10 k and 20 k. The relationship between the conversion and the number–average molecular weight was found to be linear. The dynamic mechanical thermal analysis suggests just one phase, indicating that copolymer behaves as a single material with no phase separation. This methodology provides the access to several block copolymers and other complex architectures that result from combinations of thermoplastics (PVC) and elastomers (PBA). From industrial standpoint, this process is attractive, because of easy experimental setup and the environmental friendly reaction medium. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3001–3008, 2006 相似文献
993.
Gisha Elizabeth Luckachan C. K. S. Pillai 《Journal of polymer science. Part A, Polymer chemistry》2006,44(10):3250-3260
Novel multiblock poly(ester amide)s containing poly(L ‐lactide) and cycloaliphatic amide segments were synthesized from telechelic oligomer of α,ω‐hydroxyl terminated poly(L ‐lactide), 1,3‐cyclohexylbis(methylamine), and sebacoylchloride by the “two‐step” interfacial polycondensation method. The blocky nature of PEAs was established by FTIR and 1H NMR spectroscopies. The effect of relative content of ester and amide segments on the crystallization nature of PEAs was investigated by WAXD and DSC analyses. PEAs having lower content of PLLA, PEA 1 and PEA 2, showed a crystallization pattern analogous to polyamides, whereas PEA 3, having higher content of PLLA, showed two crystalline phases characterized by polyester and polyamide segments. Random nature of PEAs was observed from single Tg values. Biodegradation studies using the enzyme lipase from Candida Cylindracea showed higher degradation rate for PEA 3 than that for PEA 1 and PEA 2. FTIR, 1H NMR, and DSC analyses of the degraded products indicated the involvement of ester linkages in the degradation process. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3250–3260, 2006 相似文献
994.
Jorge F. J. Coelho Ana M. F. P. Silva Anatoliy V. Popov Virgil Percec Mariana V. Abreu Pedro M. O. F Gonalves M. H. Gil 《Journal of polymer science. Part A, Polymer chemistry》2006,44(9):2809-2825
Living radical polymerization of n‐butyl acrylate was achieved by single electron transfer/degenerative‐chain transfer mediated living radical polymerization in water catalyzed by sodium dithionate. The plots of number–average molecular weight versus conversion and ln[M]0/[M] versus time are linear, indicating a controlled polymerization. This methodology leads to the preparation of α,ω‐di(iodo) poly (butyl acrylate) (α,ω‐di(iodo)PBA) macroinitiators. The influence of polymerization degree ([monomer]/[initiator]), amount of catalyst, concentration of suspending agents and temperature were studied. The molecular weight distributions were determined using a combination of three detectors (TriSEC): right‐angle light scattering (RALLS), a differential viscometer (DV), and refractive index (RI). The methodology studied in this work represents a possible route to prepare well‐tailored macromolecules made of butyl acrylate in an environmental friendly reaction medium. Moreover, such materials can be subsequently functionalized leading to the formation of different block copolymers of composition ABA. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2809–2825, 2006 相似文献
995.
Tim R. Dargaville Julie M. Elliott Mathew Celina 《Journal of Polymer Science.Polymer Physics》2006,44(22):3253-3264
Films of piezoelectric PVDF and P(VDF‐TrFE) were exposed to vacuum UV (115–300 nm VUV) and γ‐radiation to investigate how these two forms of radiation affect the chemical, morphological, and piezoelectric properties of the polymers. The extent of crosslinking was almost identical in both polymers after γ‐irradiation, but surprisingly, was significantly higher for the TrFE copolymer after VUV‐irradiation. Changes in the melting behavior were also more significant in the TrFE copolymer after VUV‐irradiation due to both surface and bulk crosslinking, compared with only surface crosslinking for the PVDF films. The piezoelectric properties (measured using d33 piezoelectric coefficients and D‐E hysteresis loops) were unchanged in the PVDF homopolymer, while the TrFE copolymer exhibited more narrow D‐E loops after exposure to either γ‐ or VUV‐radiation. The more severe damage to the TrFE copolymer in comparison with the PVDF homopolymer after VUV‐irradiation is explained by different energy deposition characteristics. The short wavelength, highly energetic photons are undoubtedly absorbed in the surface layers of both polymers, and we propose that while the longer wavelength components of the VUV‐radiation are absorbed by the bulk of the TrFE copolymer causing crosslinking, they are transmitted harmlessly in the PVDF homopolymer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3253–3264, 2006 相似文献
996.
J. Ramier L. Chazeau C. Gauthier L. Guy M. N. Bouchereau 《Journal of Polymer Science.Polymer Physics》2006,44(1):143-152
The treatment of nanoscopic silica grafted in the blend during the processing of silica‐filled styrene butadiene rubber was performed with silane, introduced at different concentrations, or at a constant concentration with a given length of alkyl chain. From swelling measurements in water and in solvent, the maximum silane content that can be grafted has been calculated as a function of the length of the silane alkyl chains as well as their efficiency to cover the silica surface. The found values are close to the values found in the literature for grafting in solution. Moreover, a direct correspondence between the length of the silane alkyl chains and their concentration has been deduced. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 143–152, 2006 相似文献
997.
Sangcheol Kim Frdric S. Diana Pierre M. Petroff Edward J. Kramer Takeshi Ootsu Tomohide Murase 《Journal of Polymer Science.Polymer Physics》2006,44(22):3227-3233
The encapsulation of the nanocrystalline manganese‐doped zinc sulfide (ZnS:Mn) in poly(styrene‐b‐2vinylpyridine) (PS‐PVP) diblock copolymers is reported. Below the critical micelle concentration in the absence of nanocrystals (NCs), inverse micelles of PS‐PVP were induced by adding ZnS:Mn NCs, the presence of which was confirmed by scanning force microscope and dynamic light scattering. In toluene, a PS‐selective solvent, the less‐soluble PVP blocks preferentially surround the ligand‐coated ZnS:Mn NCs. For PS‐PVP encapsulated ZnS:Mn NCs, the ratio of blue emission to orange emission of ZnS:Mn NCs is dependent on both the concentration of PS‐PVP and the solvent quality. The pyridine of PVP blocks form complexes with the Zn atoms via the nitrogen lone pair and thus the sulfur vacancies are passivated. As a result, the defect‐related blue emission is selectively quenched even when the micelles are not formed. As the concentration of PS‐PVP encapsulating the ZnS:Mn NCs increases, the intensity of blue emission decreases. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3227–3233, 2006 相似文献
998.
The solubility and diffusion coefficient of carbon dioxide in intermediate‐moisture starch–water mixtures were determined both experimentally and theoretically at elevated pressures up to 16 MPa at 50 °C. A high‐pressure decay sorption system was assembled to measure the equilibrium CO2 mass uptake by the starch–water system. The experimentally measured solubilities accounted for the estimated swollen volume by Sanchez–Lacombe equation of state (S‐L EOS) were found to increase almost linearly with pressure, yielding 4.0 g CO2/g starch–water system at 16 MPa. Moreover, CO2 solubilities above 5 MPa displayed a solubility increase, which was not contributed by the water fraction in the starch–water mixture. The solubilities, however, showed no dependence on the degree of gelatinization (DG) of starch. The diffusion coefficient of CO2 was found to increase with concentration of dissolved CO2, which is pressure‐dependent, and decrease with increasing DG in the range of 50–100%. A free‐volume‐based diffusion model proposed by Areerat was employed to predict the CO2 diffusivity in terms of pressure, temperature, and the concentration of dissolved CO2. S‐L EOS was once more used to determine the specific free volume of the mixture system. The predicted diffusion coefficients showed to correlate well with the measured values for all starch–water mixtures. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 607–621, 2006 相似文献
999.
Zhicheng Xiao Ying Li Dongling Ma Linda S. Schadler Yvonne A. Akpalu 《Journal of Polymer Science.Polymer Physics》2006,44(7):1084-1095
Small‐angle light scattering (SALS) measurements were used to study the structure of titanium dioxide (TiO2)/low‐density polyethylene (LDPE) nanocomposites. The results showed that the scattering from LDPE crystalline structures and the scattering from TiO2 nanoparticles can be resolved and separated. It is shown that the independent effects of crystallization conditions and the presence of nanoparticle aggregates on the spherulitic structure of the LDPE matrix can be determined by analyzing the scattering patterns using the methods proposed. From the SALS results, we conclude that the nanoparticle surface chemistry affects both nucleation of spherulites and their structure particularly under rapid cooling conditions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1084–1095, 2006 相似文献
1000.
Three series of pressure‐sensitive adhesives were prepared with constant glass‐transition temperature, using emulsion polymerization. The monomers chosen were butyl acrylate, 2‐ethylhexyl acrylate (EHA), methyl methacrylate (MMA), and acrylic acid (AA). Within each polymer series, the proportion of AA monomer was held constant for each polymer preparation but acrylic ester monomer levels were varied. Adhesion performance was assessed by measurement of loop tack, static shear resistance, and through the construction of peel master‐curves. Peel master‐curves were generated through peel tests conducted over a range of temperatures and peel rates and through application of the time–temperature superposition principle. Bulk effects dominated by polymer zero shear viscosity change as AA and EHA levels were varied were attributed to the observed effect on static shear resistance and the horizontal displacements of peel master‐curves. Static shear resistance was found to strongly correlate with log(aC), a parameter introduced to horizontally shift peel master‐curves to form a superposed, “super master‐curve”. An interfacial interaction was proposed to account for deviations observed when loop tack was correlated with log(aC). Surface rearrangements via hydrogen bonding with the test substrate were suggested as responsible for the interfacial interaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1237–1252, 2006 相似文献