首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14720篇
  免费   539篇
  国内免费   43篇
化学   9999篇
晶体学   229篇
力学   464篇
综合类   1篇
数学   1114篇
物理学   3495篇
  2024年   65篇
  2023年   168篇
  2022年   442篇
  2021年   428篇
  2020年   466篇
  2019年   522篇
  2018年   489篇
  2017年   464篇
  2016年   668篇
  2015年   475篇
  2014年   758篇
  2013年   1257篇
  2012年   1109篇
  2011年   1147篇
  2010年   760篇
  2009年   588篇
  2008年   721篇
  2007年   722篇
  2006年   560篇
  2005年   491篇
  2004年   377篇
  2003年   311篇
  2002年   251篇
  2001年   155篇
  2000年   130篇
  1999年   99篇
  1998年   71篇
  1997年   99篇
  1996年   94篇
  1995年   73篇
  1994年   68篇
  1993年   93篇
  1992年   97篇
  1991年   77篇
  1990年   68篇
  1989年   71篇
  1988年   49篇
  1987年   45篇
  1986年   42篇
  1985年   63篇
  1984年   62篇
  1983年   53篇
  1982年   47篇
  1981年   37篇
  1980年   45篇
  1979年   62篇
  1978年   48篇
  1977年   53篇
  1976年   41篇
  1975年   34篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
In the present work, the oxygen reduction reaction (ORR) is explored in an acidic medium with two different catalytic supports (multi-walled carbon nanotubes (MWCNTs) and nitrogen-doped multi-walled carbon nanotubes (NMWCNTs)) and two different catalysts (copper phthalocyanine (CuPc) and sulfonic acid functionalized CuPc (CuPc-SO3)). The composite, NMWCNTs-CuPc-SO3 exhibits high ORR activity (assessed based on the onset potential (0.57 V vs. reversible hydrogen electrode) and Tafel slope) in comparison to the other composites. Rotating ring disc electrode (RRDE) studies demonstrate a highly selective four-electron ORR (less than 2.5 % H2O2 formation) at the NMWCNTs-CuPc-SO3. The synergistic effect of the catalyst support (NMWCNTs) and sulfonic acid functionalization of the catalyst (in CuPc-SO3) increase the efficiency and selectivity of the ORR at the NMWCNTs-CuPc-SO3. The catalyst activity of NMWCNTs-CuPc-SO3 has been compared with many reported materials and found to be better than several catalysts. NMWCNTs-CuPc-SO3 shows high tolerance for methanol and very small deviation in the onset potential (10 mV) between the linear sweep voltammetry responses recorded before and after 3000 cyclic voltammetry cycles, demonstrating exceptional durability. The high durability is attributed to the stabilization of CuPc-SO3 by the additional coordination with nitrogen (Cu-Nx) present on the surface of NMWCNTs.  相似文献   
992.
Mutations in multi-domain leucine-rich repeat kinase 2 (LRRK2) have been an interest to researchers as these mutations are associated with Parkinson's disease. G2019S mutation in LRRK2 kinase domain leads to the formation of additional hydrogen bonds by S2019 which results in stabilization of the active state of the kinase, thereby increasing kinase activity. Two additional hydrogen bonds of S2019 are reported separately. Here, a mechanistic picture of the formation of additional hydrogen bonds of S2019 with Q1919 (also with E1920) is presented using ‘active’ Roco4 kinase as a homology model and its relationship with the stabilization of the ‘active’ G2019S LRRK2 kinase. A conformational flipping of residue Q1919 was found which helped to form stable hydrogen bond with S2019 and made ‘active’ state more stable in G2019S LRRK2. Two different states were found within the ‘active’ kinase with respect to the conformational change (flipping) in Q1919. Two doubly-mutated systems, G2019S/Q1919A and G2019S/E1920 K, were studied separately to check the effect of Q1919 and E1920. For both cases, the stable S2 state was not formed, leading to a decrease in kinase activity. These results indicate that both the additional hydrogen bonds of S2019 (with Q1919 and E1920) are necessary to stabilize the active G2019S LRRK2.  相似文献   
993.
Unlike many other biologically relevant ions (Na+, K+, Ca2+, Cl, etc) and protons, whose cellular concentrations are closely regulated by highly selective channel proteins, Li+ ion is unusual in that its concentration is well tolerated over many orders of magnitude and that no lithium-specific channel proteins have so far been identified. While one naturally evolved primary pathway for Li+ ions to traverse across the cell membrane is through sodium channels by competing with Na+ ions, highly sought-after artificial lithium-transporting channels remain a major challenge to develop. Here we show that sulfur-containing organic nanotubes derived from intramolecularly H-bonded helically folded aromatic foldamers of 3.6 Å in hollow cavity diameter could facilitate highly selective and efficient transmembrane transport of Li+ ions, with high transport selectivity factors of 15.3 and 19.9 over Na+ and K+ ions, respectively.  相似文献   
994.
Herein we report the first example of a supramolecular cage that works as a catalytic molecular reactor to perform transformations over fullerenes in aqueous medium. Taking advantage of the ability of metallo–organic Pd(II)-subphthalocyanine (SubPc) capsules to form stable host:guest complexes with C60, we have prepared a water-soluble cage that provides a hydrophobic environment for conducting cycloadditions over encapsulated C60, namely, Diels–Alder reactions with anthracene. Indeed, the presence of catalytic amounts of SubPc cage dissolved in water promotes co-encapsulation of insoluble C60 and anthracene substrates, allowing the reaction to occur inside the cavity under mild conditions. The lower stability of the host:guest complex with the resulting C60 cycloadduct facilitates its displacement by pristine C60, which grants catalytic turnover. Moreover, bis-addition compounds are regioselectively formed inside the cage when using excess anthracene.  相似文献   
995.
We present surface reconstruction-induced C−C coupling whereby CO2 is converted into ethylene. The wurtzite phase of CuGaS2. undergoes in situ surface reconstruction, leading to the formation of a thin CuO layer over the pristine catalyst, which facilitates selective conversion of CO2 to ethylene (C2H4). Upon illumination, the catalyst efficiently converts CO2 to C2H4 with 75.1 % selectivity (92.7 % selectivity in terms of Relectron) and a 20.6 μmol g−1 h−1 evolution rate. Subsequent spectroscopic and microscopic studies supported by theoretical analysis revealed operando-generated Cu2+, with the assistance of existing Cu+, functioning as an anchor for the generated *CO and thereby facilitating C−C coupling. This study demonstrates strain-induced in situ surface reconstruction leading to heterojunction formation, which finetunes the oxidation state of Cu and modulates the CO2 reduction reaction pathway to selective formation of ethylene.  相似文献   
996.
MXenes, due to their tailorable chemistry and favourable physical properties, have great promise in electrocatalytic energy conversion reactions. To exploit fully their enormous potential, further advances specific to electrocatalysis revolving around their performance, stability, compositional discovery and synthesis are required. The most recent advances in these aspects are discussed in detail: surface functional and stoichiometric modifications which can improve performance, Pourbaix stability related to their electrocatalytic operating conditions, density functional theory and advances in machine learning for their discovery, and prospects in large scale synthesis and solution processing techniques to produce membrane electrode assemblies and integrated electrodes. This Review provides a perspective that is complemented by new density functional theory calculations which show how these recent advances in MXene material design are paving the way for effective electrocatalysts required for the transition to integrated renewable energy systems.  相似文献   
997.
An efficient sequential one-pot, two-step pseudo-four-component reaction between 3/4-methyl N-sulfonyl ketimines with 3-chloropropiophenones triggered by DIPEA/NaHCO3 as a cooperative base and subsequent aza-cyclization using NH4OAc is reported. This transition-metal-oxidant-free technique concocts new C−C/C=C/C=N−C bonds selectively, guaranteeing acceptable yields of 2,3,6-trisubstituted pyridines possessing ortho-hydroxyaryl/benzenesulfonamide and propiophenone moieties at C2 and C3 positions, respectively. Interestingly, while replacing methyl-substituents with straight alkyl chains of N-sulfonyl ketimines, only a monoalkylation reaction happened with in situ-generated vinyl ketones to deliver promising yields of 3-picoline derivatives. Moreover, the synthetic transmutation of prepared pyridine derivative led to several important classes of pyridocoumarin, 5H-chromenopyridine, and di(pyridin-3-yl) methane derivatives.  相似文献   
998.
The design of an appropriate analytical method for assessing the quality of pharmaceuticals requires a deep understanding of science, and risk evaluation approaches are appreciated. The current study discusses how a related substance method was developed for Nintedanib esylate. The best possible separation between the critical peak pairs was achieved using an X-Select charged surface hybrid Phenyl Hexyl (150 × 4.6) mm, 3.5 μm column. A mixture of water, acetonitrile, and methanol in mobile phase-A (70:20:10) and mobile phase-B (20:70:10), with 0.1% trifluoroacetic acid and 0.05% formic acid in both eluents. The set flow rate, wavelength, and injection volumes were 1.0 ml/min, 285 nm, and 5 μl, respectively, with gradient elution. The method conditions were validated as per regulatory requirements and United States Pharmacopeia general chapter < 1225 >. The correlation coefficient for all impurities from the linearity experiment was found to be > 0.999. The % relative standard deviation from the precision experiments ranged from 0.4 to 3.6. The mean %recovery from the accuracy study ranged from 92.5 to 106.5. Demonstrated the power of the stability-indicating method through degradation studies; the active drug component is more vulnerable to oxidation than other conditions. Final method conditions were further evaluated using a full-factorial design. The robust method conditions were identified using the graphical optimization from the design space.  相似文献   
999.
Generally, graphynes have been generated by the insertion of acetylenic content (−C≡C−) in the graphene network in different ratios. Also, several aesthetically pleasing architectures of two-dimensional (2D) flatlands have been reported with the incorporation of acetylenic linkers between the heteroatomic constituents. Prompted by the experimental realization of boron phosphide, which has provided new insights on the boron-pnictogen family, we have modelled novel forms of acetylene-mediated borophosphene nanosheets by joining the orthorhombic borophosphene stripes with different widths and with different atomic constituents using acetylenic linkers. Structural stabilities and properties of these novel forms have been assessed using first-principles calculations. Investigation of electronic band structure elucidates that all the novel forms show the linear band crossing closer to the Fermi level at Dirac point with distorted Dirac cones. The linearity in the hole and electronic bands impose the high Fermi velocity to the charge carriers close to that of graphene. Finally, we have also unravelled the propitious features of acetylene-mediated borophosphene nanosheets as anodes in Li-ion batteries.  相似文献   
1000.
The reaction of RuII(PPh3)3X2 (X = Cl, Br) with o-(OH)C6H4C(H)=N-CH2C6H5 (HL) under aerobic conditions affords RuII(L)2(PPh3)2, 1, in which both the ligands (L) are bound to the metal center at the phenolic oxygen (deprotonated) and azomethine nitrogen and RuIII(L1)(L2)(PPh3), 2, in which one L is in bidentate N,O form like in complex 1 and the other ligand is in tridentate C,N,O mode where cyclometallation takes place from the ortho carbon atom (deprotonated) of the benzyl amine fragment. The complex 1 is unstable in solution, and undergoes spontaneous oxidative internal transformation to complex 2. In solid state upon heating, 1 initially converts to 2 quantitatively and further heating causes the rearrangement of complex 2 to the stable RuL3 complex. The presence of symmetry in the diamagnetic, electrically neutral complex 1 is confirmed by 1H and 31P NMR spectroscopy. It exhibits an RuII → L, MLCT transition at 460 nm and a ligand based transition at 340 nm. The complex 1 undergoes quasi-reversible ruthenium(II)—ruthenium(III) oxidation at 1.27V vs. SCE. The one-electron paramagnetic cyclometallated ruthenium(III) complex 2 displays an L → RuIII, LMCT transition at 658 nm. The ligand based transition is observed to take place at 343 nm. The complex 2 shows reversible ruthenium(III)—ruthenium(IV) oxidation at 0.875V and irreversible ruthenium(III)—ruthenium(II) reduction at −0.68V vs. SCE. It exhibits a rhombic EPR spectrum, that has been analysed to furnish values of axial (6560 cm−1) and rhombic (5630 cm−1) distortion parameters as well as the energies of the two expected ligand field transitions (3877 cm−1 and 9540 cm−1) within the t2 shell. One of the transitions has been experimentally observed in the predicted region (9090 cm−1). The first order rate constants at different temperatures and the activation parameter ΔH#S# values of the conversion process of 1 → 2 have been determined spectrophotometrically in chloroform solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号