首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   485篇
  免费   26篇
  国内免费   2篇
化学   384篇
晶体学   12篇
力学   13篇
数学   13篇
物理学   91篇
  2024年   1篇
  2023年   5篇
  2022年   15篇
  2021年   16篇
  2020年   9篇
  2019年   18篇
  2018年   15篇
  2017年   23篇
  2016年   26篇
  2015年   13篇
  2014年   28篇
  2013年   50篇
  2012年   48篇
  2011年   41篇
  2010年   24篇
  2009年   17篇
  2008年   37篇
  2007年   25篇
  2006年   35篇
  2005年   21篇
  2004年   17篇
  2003年   6篇
  2002年   11篇
  2001年   2篇
  2000年   4篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1984年   1篇
  1982年   1篇
排序方式: 共有513条查询结果,搜索用时 15 毫秒
81.
The kinetics of the oxidation of 2-methyl cyclohexanone and cycloheptanone with Fe(CN)6 3− catalyzed by RhCl3 in alkaline medium was investigated at four temperatures. The rate follows direct proportionality with respect to lower concentrations of hexacyanoferrate(III) ion, but tends to become zero order at higher concentrations of the oxidant, while the reaction shows first-order kinetics with respect to hydroxide ion and cyclic ketone concentrations. The rate shows a peculiar nature with respect to RhCl3 concentrations in that it increases with increase in catalyst at low catalyst concentrations but after reaching a maximum, further increase in concentration retards the rate. An increase in the ionic strength of the medium increases the rate, while increase in the Fe(CN)6 4− concentration decreases the rate.  相似文献   
82.
An efficient synthesis of bis(indolyl)methanes and di(indolyl)indolin-2-ones has been developed by a sequential approach involving gold(I)-catalyzed cycloisomerization/bis-addition of o-ethynylanilines with various aldehydes and isatins, respectively. This methodology opens clean and synthetically competitive alternative to the already established procedures of the synthesis of bis(indolyl)methanes and di(indolyl)indolin-2-ones.  相似文献   
83.
Ionic liquid (IL)-mediated sol–gel hybrid organic–inorganic materials present enormous potential for effective use in analytical microextraction. This opportunity, however, has not yet been explored. One obstacle to materializing this prospect arises from high viscosity of ILs significantly slowing down sol–gel reactions. In this work, we developed a method that overcomes this hurdle and provides IL-mediated advanced sol–gel materials for capillary microextraction (CME). We examined two different ILs: (a) a phosphonium-based IL, trihexyltetradecylphosphonium tetrafluoroborate, and (b) a pyridinium-based ionic liquid, N-butyl-4-methylpyridinium tetrafluoroborate. These ILs were evaluated in conjunction with two types of hydroxy-terminated polymers: (a) two Si–OH terminated polymers (PDMS and BMPO), and (b) two C–OH terminated polymers (PEG and polyTHF) that differ in their sol–gel reactivity. Scanning electron microscopy results demonstrate that ILs can serve as porogenic agents in sol–gel reactions. The IL-mediated sol–gel coatings prepared with silanol-terminated polymers provided up to 28 times higher extractions in off-line CME-GC compared to analogous sol–gel coatings prepared without any IL in the sol solution. Contrary to this, the IL-mediated sol–gel coatings prepared with C–OH terminated polymers provided lower extraction efficiencies compared to their IL-free counterparts. These observations were explained by (a) lower sol–gel reactivity of C–OH groups in PEG and polyTHF compared to Si–OH groups in PDMS and in hydrolyzed alkoxysilane precursors and (b) extremely high viscosity of ionic liquids. This study shows that IL-generated porous morphology alone is not enough to provide effective extraction media: careful choice of the organic polymer and the precursor with close sol–gel reactivity must be made to ensure effective chemical bonding of the organic polymer to the created sol–gel material to be able to provide the desired sorbent characteristics. Additionally, IL-mediated sol–gel PDMS coatings provided run-to-run RSD values of 4.2–5.0% and detection limits ranging from 3.2 ng/L to 17.4 ng/L. PDMS sol–gels prepared without ILs provided RSD values of 2.8–14.1%, and detection limits ranging from 4.9 ng/L to 487.0 ng/L.  相似文献   
84.
Potentiodynamic polarization studies were carried out on nanocrystalline I, nanocrystalline II and nanocrystalline III states having crystallite size 35 ± 5 nm, 18 ± 2 nm and 10 ± 2 nm of the alloy Ti60Ni40 in 1 M H2SO4 aqueous medium. It was observed that the nanocrystalline III state exhibits superior corrosion resistance as compared to the nanocrystalline II and nanocrystalline I states of the alloy Ti60Ni40. XPS studies were also performed after corrosion test and it was observed that nanocrystalline III state contains only Ti2+ and Ti4+ species whereas nanocrystalline I and nanocrystalline II state contains Ti2+, Ti3+and Ti4+ along with some unoxidized metallic Ti0 in the case of nanocrystalline I state. Thus the small crystallite size and the presence of only Ti2+ and Ti4+ species in the form of TiO and TiO2 leads to the formation of a protective oxide film which is adherent, stable and improves the corrosion resistance of the nanocrystalline III state of the alloy Ti60Ni40.  相似文献   
85.
Control over supramolecular assemblies of donor and acceptor arrays in nanoscale dimension that facilitate efficient energy transfer resulting in tunable emission is an outstanding challenge. In pursuit of this goal, we have designed a supramolecular donor-acceptor organogel with tunable emission from green to red through controlled energy transfer by simply varying the acceptor concentration. Temperature-dependent UV/vis absorption, XRD, and AFM studies of the coassembly of 1 (donor) and 2 (acceptor) revealed the intercalation of 2 within the self-assembly of 1. Upon excitation of the decane gels of 1 with 0-2 mol % of 2, quenching of the emission of the former at 509 nm with the formation of the monomer emission of the latter at 555 nm is observed. Upon further addition of 2 (2-20 mol %), the emission was continuously red-shifted to 610 nm, which corresponds to the aggregate emission of 2. Consequently, a 98% quenching of the donor emission was observed at 509 nm. Fluorescence microscopic studies provided visual evidence for the color tuning of the FRET emission. Thus efficient trapping of excitons by "isolated" or "aggregated" acceptors through a subtle control of the self-assembly and the photophysical properties of the donor-acceptor building blocks allowed a continuous shifting of the emission color anywhere between green and red (lambdamax, 509-610 nm) in a supramolecular light harvesting system.  相似文献   
86.
The solid state diffusion-controlled growth of the phases is studied for the Au–Sn system in the range of room temperature to 200 °C using bulk and electroplated diffusion couples. The number of product phases in the interdiffusion zone decreases with the decrease in annealing temperature. These phases grow with significantly high rates even at the room temperature. The growth rate of the AuSn4 phase is observed to be higher in the case of electroplated diffusion couple because of the relatively small grains and hence high contribution of the grain boundary diffusion when compared to the bulk diffusion couple. The diffraction pattern analysis indicates the same equilibrium crystal structure of the phases in these two types of diffusion couples. The analysis in the AuSn4 phase relating the estimated tracer diffusion coefficients with grain size, crystal structure, the homologous temperature of experiments and the concept of the sublattice diffusion mechanism in the intermetallic compounds indicate that Au diffuses mainly via the grain boundaries, whereas Sn diffuses via both the grain boundaries and the lattice.  相似文献   
87.
A new ligand 3-(1H-imidazo[4,5-f][1,10]phenanthrolin-2yl)phenylboronic acid and its (IPPBA) three ruthenium(II) complexes [Ru(phen)2(IPPBA)](ClO4)2 (1), [Ru(bpy)2(IPPBA)](ClO4)2 (2) and [Ru(dmb)2(IPPBA)](ClO4)2 (3) have been synthesized and characterized by elemental analysis, UV/VIS, IR, 1H-NMR,13C-NMR and mass spectra. The binding behaviors of the three complexes to calf thymus DNA were investigated by absorption spectra, emission spectroscopy, viscosity measurements, thermal denaturation and photoactivated cleavage. The DNA-binding constants for complexes 1, 2 and 3 have been determined to be 7.9?×?105 M?1, 6.7?×?105 M?1 and 2.9?×?105 M?1. The results suggest that these complexes bound to double-stranded DNA in an intercalation mode. Upon irradiation at 365 nm, three ruthenium complexes were found to promote the cleavage of plasmid pBR322 DNA from super coiled form ? to nicked form ??. Further in the presence of Co2+, the emission of DNA–Ru(ΙΙ) complexes can be quenched. And when EDTA was added, the emission was recovered. The experimental results show that all three complexes exhibited the “on–off–on” properties of molecular “light switch”. The highest Cytotoxicity potential of the complex1 was observed on the Human alveolar adenocarcinoma (A549) cell line. Good agreement was generally found between the spectroscopic techniques and molecular docked model which provides further evidence of groove binding.  相似文献   
88.
We consider the creation of the maximum Raman coherence in the six-level Λ system using optimal control theory. Optimal fields are designed for different initial conditions, resonant, and off-resonant, using the Krotov method including a reference field into the cost functional. Suppression of the population transfer to the intermediate level is achieved via an additional functional constraint which depends on the system dynamics. We demonstrate that the spectrum of the optimised fields has major contribution from the corresponding resonant frequencies independently of the choice of carrier frequency of the initial guess field. We also indicate that the pulse train emerges as a solution of the control problem of coherence optimisation in multi-level quantum systems.  相似文献   
89.
The fabrication of a mesoporous silica nanoparticle (MSN)?protamine hybrid system (MSN?PRM) is reported that selectively releases drugs in the presence of specific enzyme triggers present in the proximity of cancer cells. The enzyme trigger involved is a protease called trypsin, which is overexpressed in certain specific pathological conditions, such as inflammation and cancer. Overexpression of trypsin is known to be associated with invasion, metastasis, and growth in several cancers, such as leukemia, colon cancer, and colorectal cancer. The current system (MSN–PRM) consists of an MSN support in which mesopores are capped with an FDA‐approved peptide drug protamine, which effectively blocks the outward diffusion of the drug molecules from the mesopores of the MSNs. On exposure to the enzyme trigger, the protamine cap disintegrates, opening up the molecular gates and releasing the entrapped drug molecules. The system exhibits minimal premature release in the absence of the trigger and selectively releases the encapsulated drugs in the presence of the proteases secreted by colorectal cancer cells. The ability of the MSN–PRM particles to deliver anticancer drugs to colorectal cancer cells has also been demonstrated. The hydrophobic drug is released into cancer cells subsequent to disintegration of the protamine cap, resulting in cell death. Drug‐induced cell death in colorectal cancer cells is significantly enhanced when the hydrophobic drug that is known to degrade in aqueous environments is encapsulated in the MSN–PRM system in comparison to the free drug (P < 0.05). The system, which shows good biocompatibility and selective drug release, is a promising platform for cancer specific drug delivery.  相似文献   
90.
Withania somnifera (L.) Dunal. (Indian ginseng) is an important medicinal plant which yields pharmaceutically active compounds, namely withanolides. This study deals with the optimisation of the adventitious root suspension culture of W. somnifera for the production of biomass and withanolide-A. We investigated the effects of macro elements (NH(4)NO(3), KNO(3), CaCl(2), MgSO(4) and KH(2)PO(4)) and nitrogen source [[Formula: see text]] of Murashige and Skoog (MS) medium on the accumulation of biomass and withanolide-A content. The highest accumulation of fresh and dry biomass (127.52 and 12.45?g?L(-1)) was recorded in the medium with 0.5× concentration of NH(4)NO(3) and the highest production of withanolide-A was recorded in the medium with 2.0× KNO(3) (14.00?mg?g(-1) DW). The adventitious root growth was greater when the [Formula: see text] concentration was higher than that of [Formula: see text] and the withanolide-A production was highest in the absence of [Formula: see text]. Maximum biomass growth was achieved at [Formula: see text] ratio of 14.38?:?37.60, while withanolide-A production was greatest (11.76?mg?g(-1) DW) when the [Formula: see text] ratio was 0.00?:?18.80?mM. The results of this study are useful for scale-up processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号