首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1034篇
  免费   39篇
  国内免费   3篇
化学   732篇
晶体学   7篇
力学   32篇
数学   77篇
物理学   228篇
  2023年   8篇
  2022年   29篇
  2021年   24篇
  2020年   32篇
  2019年   32篇
  2018年   42篇
  2017年   17篇
  2016年   32篇
  2015年   31篇
  2014年   43篇
  2013年   69篇
  2012年   87篇
  2011年   78篇
  2010年   48篇
  2009年   39篇
  2008年   43篇
  2007年   48篇
  2006年   46篇
  2005年   35篇
  2004年   31篇
  2003年   27篇
  2002年   17篇
  2001年   17篇
  2000年   20篇
  1999年   4篇
  1998年   7篇
  1997年   4篇
  1996年   5篇
  1995年   10篇
  1994年   8篇
  1993年   6篇
  1992年   5篇
  1991年   7篇
  1990年   4篇
  1989年   5篇
  1988年   6篇
  1986年   7篇
  1985年   10篇
  1984年   9篇
  1983年   5篇
  1982年   7篇
  1981年   7篇
  1980年   7篇
  1979年   14篇
  1978年   8篇
  1977年   9篇
  1976年   5篇
  1975年   5篇
  1974年   4篇
  1973年   4篇
排序方式: 共有1076条查询结果,搜索用时 15 毫秒
41.
42.
Flows in which shock waves and turbulence are present and interact dynamically occur in a wide range of applications, including inertial confinement fusion, supernovae explosion, and scramjet propulsion. Accurate simulations of such problems are challenging because of the contradictory requirements of numerical methods used to simulate turbulence, which must minimize any numerical dissipation that would otherwise overwhelm the small scales, and shock-capturing schemes, which introduce numerical dissipation to stabilize the solution. The objective of the present work is to evaluate the performance of several numerical methods capable of simultaneously handling turbulence and shock waves. A comprehensive range of high-resolution methods (WENO, hybrid WENO/central difference, artificial diffusivity, adaptive characteristic-based filter, and shock fitting) and suite of test cases (Taylor–Green vortex, Shu–Osher problem, shock-vorticity/entropy wave interaction, Noh problem, compressible isotropic turbulence) relevant to problems with shocks and turbulence are considered. The results indicate that the WENO methods provide sharp shock profiles, but overwhelm the physical dissipation. The hybrid method is minimally dissipative and leads to sharp shocks and well-resolved broadband turbulence, but relies on an appropriate shock sensor. Artificial diffusivity methods in which the artificial bulk viscosity is based on the magnitude of the strain-rate tensor resolve vortical structures well but damp dilatational modes in compressible turbulence; dilatation-based artificial bulk viscosity methods significantly improve this behavior. For well-defined shocks, the shock fitting approach yields good results.  相似文献   
43.
44.
A comparative study of two different particle sizes of ferroelectric barium titanate (BaTiO3) nanoparticles as a dopant on the molecular structure, spontaneous polarization and dielectric behavior of a pure ferroelectric liquid crystal 6F6T have been studied. It has been found that there is a remarkable decrease in isotropic temperature of both doped samples as compared to the pure 6F6T sample. The spontaneous polarization also decreases for both the doped samples and the reduction is more pronounced in case of the dopant with large particle size. The dielectric spectroscopy confirms the presence of soft mode as well as Goldstone mode and also shows the decrease in the value of dielectric permittivity ?' as a function of frequency for both doped samples. The improvised properties of liquid crystal host doped with BaTiO3 nanoparticles mainly depend upon the synthesis method of nanoparticles and also upon the particle size of dopant.  相似文献   
45.
46.
Novel drug delivery systems capable of continuous sustained release of therapeutics have been studied extensively for use in the prevention and management of chronic diseases. The use of these systems holds promise as a means to achieve higher patient compliance while improving therapeutic index and reducing systemic toxicity. In this work, an implantable nanochannel drug delivery system (nDS) is characterized and evaluated for the long-term sustained release of atorvastatin (ATS) and trans-resveratrol (t-RES), compounds with a proven role in managing atherogenic dyslipidemia and promoting cardioprotection. The primary mediators of drug release in the nDS are nanofluidic membranes with hundreds of thousands of nanochannels (up to 100,000/mm2) that attain zero-order release kinetics by exploiting nanoconfinement and molecule-to-surface interactions that dominate diffusive transport at the nanoscale. These membranes were characterized using gas flow analysis, acetone diffusion, and scanning and transmission electron microscopy (SEM, TEM). The surface properties of the dielectric materials lining the nanochannels, SiO2 and low-stress silicon nitride, were further investigated using surface charge analysis. Continuous, sustained in vitro release for both ATS and t-RES was established for durations exceeding 1 month. Finally, the influence of the membranes on cell viability was assessed using human microvascular endothelial cells. Morphology changes and adhesion to the surface were analyzed using SEM, while an MTT proliferation assay was used to determine the cell viability. The nanochannel delivery approach, here demonstrated in vitro, not only possesses all requirements for large-scale high-yield industrial fabrication, but also presents the key components for a rapid clinical translation as an implantable delivery system for the sustained administration of cardioprotectants.  相似文献   
47.
Selective O-deallylation of dihydropyrazoles has been achieved by use of iodine (10 mol%) in PEG-400 as ecofriendly solvent. Iodine (10 mol%) in dimethyl sulfoxide at 100 °C also afforded O-deallylation with aromatization compatible with highly reactive N-allyl and formyl groups. The function of iodine in the synthesis of substituted pyrazoles under different conditions is described.  相似文献   
48.
Putrajeevak (Putranjiva roxburghii Wall.; synonym Drypetes roxburghii (Wall.) Hurus) seeds have been used since ancient times in the treatment of infertility in the Ayurvedic system of medicine in India. In this study, the oil component of Putrajeevak seeds (PJSO) was extracted using the supercritical fluid extraction (SCFE) method using liquid CO2 and the constituents were analyzed using gas chromatography-flame ionized detectorand high-performance thin-layer chromatography. PJSO contained trace amounts of β-sitosterol with oleic and linoleic acids as the major fatty acid constituents. Male and female zebrafish were mutagenized with N-ethyl-N-nitrosourea (ENU) and fish that produced less than 20 viable embryos were selected for the study. SCFE oil extracts from the P. roxburghii seeds were used in this study to reverse fertility impairment. The mutant fish were fed with PJSO for a period of 14 days and the rates of fertility, conception, and fecundity were determined with wild-type healthy fish as a breeding partner. Treatment with PJSO increased the ovarian follicle count as well as the number of mature eggs, while reducing the number of ovarian cysts. Sperm count as well as sperm motility were greatly enhanced in the ENU-mutagenized male zebrafish when treated with PJSO. The results obtained in this study demonstrate the effectiveness of P. roxburghii seed oil in reversing impaired fertility in both male and female zebrafish models.  相似文献   
49.
Direct alcohol fuel cells (DAFCs) have been recently playing a pivotal role in electrochemical energy sources and portable electronics. Research in DAFCs has proceeded to engage major attention due to their high catalytic activity, long-term stability, portability, and low cost. Herein, we present a facile surfactant-free route to anchor bimetallic Pd−W nanoparticles supported fullerene-C60 catalyst (Pd-W@Fullerene-C60) for high-performance electrooxidation of alcohols (methanol & ethanol) for DAFCs applications. Structural, elemental composition, and morphological analysis of the proposed catalyst were carried out using UV-Vis spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and energy-dispersive x-ray spectroscopy (EDX). Electrochemical properties such as electrochemical activity, electrochemical active surface area (ECSA), and long-term stability of the Pd-W@Fullerene-C60 catalyst for ethanol and methanol oxidation in the alkaline medium were explored by using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry (CA). Results revealed that the proposed catalyst showed enlarged ECSA, tremendous electrocatalytic activity, high poison tolerance limit, good reproducibility, and enhanced long-term stability as compared to the monometallic catalyst and commercially available catalyst (Pt/C) towards ethanol and methanol oxidation reaction. This enhanced potentiality of the Pd-W@Fullerene-C60 catalyst is due to the synergistic effect of W−Pd nanoparticles and excellent electron kinetic from fullerene support material. These findings strongly suggest the Pd-W@Fullerene-C60 catalyst as potential anode material for the alcohol oxidation reaction.  相似文献   
50.
In this work, an economically viable, very low cost, indigenous, ubiquitously available electrochemical sensor based on bimetallic nickel and tungsten nanoparticles modified pencil graphite electrode (NiNP-WNP@PGE) was fabricated for the sensitive and selective detection of bisphenol A (BPA). The NiNP-WNP@PGE sensor was prepared by a facile electrochemical one step co-deposition method. The prepared nanocomposite was morphologically characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), electrochemically by cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The proposed sensor displayed high electrocatalytic activity towards electro-oxidation of BPA with one irreversible peak. The fabricated sensor displayed a wide detection window between 0.025 μM and 250 μM with a limit of detection of 0.012 μM. PGE sensor was successfully engaged for the detection of BPA in bottled water, biological, and baby glass samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号