A new photo-controlled anticancer drug release system is reported based on the photo-induced electron transfer (PET) between semiconductor quantum dots (QDs) and N-methyl-4-picolinium (NAP) ester 1 under the excitation of visible light. 相似文献
Silicon oxide (SiO(x)) has been widely used in many electronic systems as a supportive and insulating medium. Here, we demonstrate various electrical phenomena such as resistive switching and related nonlinear conduction, current hysteresis, and negative differential resistance intrinsic to a thin layer of SiO(x). These behaviors can largely mimic numerous electrical phenomena observed in molecules and other nanomaterials, suggesting that substantial caution should be paid when studying conduction in electronic systems with SiO(x) as a component. The actual electrical phenomena can be the result of conduction from SiO(x) at a post soft-breakdown state and not the presumed molecular or nanomaterial component. These electrical properties and the underlying mechanisms are discussed in detail. 相似文献
Poly(N‐isopropylacrylamide)‐block‐poly{6‐[4‐(4‐pyridyazo)phenoxy] hexylmethacrylate} (PNIPAM‐b‐PAzPy) was synthesized by successive reversible addition‐fragmentation chain transfer (RAFT) polymerization. In a water/tetrahydrofuran (H2O/THF) mixture, amphiphilic PNIPAM‐b‐PAzPy self‐assembles into giant micro‐vesicles. Upon alternate ultraviolet (UV) and visible light irradiation, obvious reversible swelling‐shrinking of the vesicles was observed directly under an optical microscope. The maximum percentage increase in volume, caused by the UV light, reached 17%. Moreover, the swelling could be adjusted using the UV light power density. The derivation of this effect is due to photoinduced reversible isomerization of azopyridine units in the vesicles.
Three new triterpenoid derivatives, named (15α)‐15‐hydroxysoyasapogenol B ( 1 ), (7β,15α)‐7,15‐dihydroxysoyasapogenol B ( 2 ), and (7β)‐7,29‐dihydroxysoyasapogenol B ( 3 ), were isolated from cultures of the plant endophytic fungus Pestalotiopsis clavispora. Their structures and relative configurations were elucidated by extensive spectroscopic analysis and X‐ray crystallography. 相似文献
The similar electrochemical oxidation behaviors of hydroxypivalaldehyde in ionic liquids (ILs) medium, C4MIMPF6, C4MIMBF4 and CsMIMPF6, are investigated using classic electrochemical methods, respectively. Only the product, hydroxypivalic acid is detected by high performance liquid chromatography (HPLC). It can be conferred that the electrochemical oxidation of hydroxypivalaldehyde consists of two successive one-electron irreversible reactions at glass carbon (GC) electrode and the possible reaction mechanism in the ILs is proposed firstly. The diffusion coefficients of hydroxypivalaldehyde are obtained according to the electrochemical characteristics of hydroxypivalaldehyde in C4MIMPF6, C4MIMBF4 and CsMIMPF6. 相似文献
Various sensor‐based immunoassay methods have been extensively developed for the detection of cancer antigen 15‐3 (CA 15‐3), but most often exhibit low detection signals and low detection sensitivity, and are unsuitable for routine use. The aim of this work is to develop a simple and sensitive electrochemical immunoassay for CA 15‐3 in human serum by using nanogold and DNA‐modified immunosensors. Prussian blue (PB), as a good mediator, was initially electrodeposited on a gold electrode surface, then double‐layer nanogold particles and double‐strand DNA (dsDNA) with the sandwich‐type architecture were constructed on the PB‐modified surface in turn, and then anti‐CA 15‐3 antibodies were adsorbed onto the surface of nanogold particles. The double‐layer nanogold particles provided a good microenvironment for the immobilization of biomolecules. The presence of dsDNA enhanced the surface coverage of protein, and improved the sensitivity of the immunosensor. The performance and factors influencing the performance of the immunosensor were evaluated. Under optimal conditions, the proposed immunosensor exhibited a wide linear range from 1.0 to 240 ng/mL with a relatively low detection limit of 0.6 ng/mL (S/N=3) towards CA 15‐3. The stability, reproducibility and precision of the as‐prepared immunosensor were acceptable. 57 serum specimens were assayed by the developed immunosensor and standard enzyme‐linked immunosorbent assay (ELISA), respectively, and the results obtained were almost consistent. More importantly, the proposed methodology could be further developed for the immobilization of other proteins and biocompounds. 相似文献