首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   0篇
化学   6篇
力学   4篇
数学   9篇
物理学   28篇
  2022年   2篇
  2021年   1篇
  2016年   1篇
  2014年   4篇
  2013年   2篇
  2012年   7篇
  2011年   3篇
  2010年   6篇
  2009年   4篇
  2008年   9篇
  2007年   4篇
  2005年   1篇
  2002年   1篇
  1979年   2篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
21.
In this paper, we construct an asymptotic expansion of a time-harmonic wave scattered by N small spheres. This construction is based on the method of matched asymptotic expansions. Error estimates give a theoretical background to the approach.  相似文献   
22.
Pierre-Henri Chavanis   《Physica A》2010,389(3):375-396
When considering the hydrodynamics of Brownian particles, one is confronted to a difficult closure problem. One possibility to close the hierarchy of hydrodynamic equations is to consider a strong friction limit. This leads to the Smoluchowski equation that reduces to the ordinary diffusion equation in the absence of external forces. Unfortunately, this equation has infinite propagation speed leading to some difficulties. Another possibility is to make a Local Thermodynamic Equilibrium (L.T.E) assumption. This leads to the damped Euler equation with an isothermal equation of state. However, this approach is purely phenomenological. In this paper, we provide a preliminary discussion of the validity of the L.T.E assumption. To that purpose, we consider the case of free Brownian particles and harmonically bound Brownian particles for which exact analytical results can be obtained [S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943)]. For these systems, we find that the L.T.E. assumption is not unreasonable and that it can be improved by introducing a time dependent kinetic temperature Tkin(t)=γ(t)T instead of the bath temperature T. We also compare hydrodynamic equations and generalized diffusion equations with time dependent diffusion coefficients.  相似文献   
23.
24.
The European Physical Journal B - A two-cluster system with a bistable potential is constructed in one-dimensional channels. Using molecular dynamics and Monte Carlo methods, we study the...  相似文献   
25.
26.
We propose a parameterization of 2D geophysical turbulence in the form of a relaxation equation similar to a generalized Fokker–Planck equation [P.H. Chavanis, Phys. Rev. E 68 (2003) 036108]. This equation conserves circulation and energy and increases a generalized entropy functional determined by a prior vorticity distribution fixed by small-scale forcing [R. Ellis, K. Haven, B. Turkington, Nonlinearity 15 (2002) 239]. We discuss applications of this formalism to jovian atmosphere and Jupiter’s great red spot. We show that, in the limit of small Rossby radius where the interaction becomes short-range, our relaxation equation becomes similar to the Cahn–Hilliard equation describing phase ordering kinetics. This strengthens the analogy between the jet structure of the great red spot and a “domain wall”. Our relaxation equation can also serve as a numerical algorithm to construct arbitrary nonlinearly dynamically stable stationary solutions of the 2D Euler equation. These solutions can represent jets and vortices that emerge in 2D turbulent flows as a result of violent relaxation. Due to incomplete relaxation, the statistical prediction may fail and the system can settle on a stationary solution of the 2D Euler equation which is not the most mixed state. In that case, it can be useful to construct more general nonlinearly dynamically stable stationary solutions of the 2D Euler equation in an attempt to reproduce observed phenomena.  相似文献   
27.
We introduce stochastic models of chemotaxis generalizing the deterministic Keller–Segel model. These models include fluctuations which are important in systems with small particle numbers or close to a critical point. Following Dean’s approach, we derive the exact kinetic equation satisfied by the density distribution of cells. In the mean field limit where statistical correlations between cells are neglected, we recover the Keller–Segel model governing the smooth density field. We also consider hydrodynamic and kinetic models of chemotaxis that take into account the inertia of the particles and lead to a delay in the adjustment of the velocity of cells with the chemotactic gradient. We make the connection with the Cattaneo model of chemotaxis and the telegraph equation.  相似文献   
28.
We derive general kinetic and hydrodynamic models of chemotactic aggregation that describe certain features of the morphogenesis of biological colonies (like bacteria, amoebae, endothelial cells or social insects). Starting from a stochastic model defined in terms of N coupled Langevin equations, we derive a nonlinear mean-field Fokker-Planck equation governing the evolution of the distribution function of the system in phase space. By taking the successive moments of this kinetic equation and using a local thermodynamic equilibrium condition, we derive a set of hydrodynamic equations involving a damping term. In the limit of small frictions, we obtain a hyperbolic model describing the formation of network patterns (filaments) and in the limit of strong frictions we obtain a parabolic model which is a generalization of the standard Keller-Segel model describing the formation of clusters (clumps). Our approach connects and generalizes several models introduced in the chemotactic literature. We discuss the analogy between bacterial colonies and self-gravitating systems and between the chemotactic collapse and the gravitational collapse (Jeans instability). We also show that the basic equations of chemotaxis are similar to nonlinear mean-field Fokker-Planck equations so that a notion of effective generalized thermodynamics can be developed.  相似文献   
29.
In this paper, we describe a second-order accurate cell-centered finite volume method for solving anisotropic diffusion on two-dimensional unstructured grids. The resulting numerical scheme, named CCLAD (Cell-Centered LAgrangian Diffusion), is characterized by a local stencil and cell-centered unknowns. It is devoted to the resolution of diffusion equation on distorted grids in the context of Lagrangian hydrodynamics wherein a strong coupling occurs between gas dynamics and diffusion. The space discretization relies on the introduction of two half-edge normal fluxes and two half-edge temperatures per cell interface using the partition of each cell into sub-cells. For each cell, the two half-edge normal fluxes attached to a node are expressed in terms of the half-edge temperatures impinging at this node and the cell-centered temperature. This local flux approximation can be derived through the use of either a sub-cell variational formulation or a finite difference approximation, leading to the two variants CCLADS and CCLADNS. The elimination of the half-edge temperatures is performed locally at each node by solving a small linear system which is obtained by enforcing the continuity condition of the normal heat flux across sub-cell interface impinging at the node. The accuracy and the robustness of the present scheme is assessed by means of various numerical test cases.  相似文献   
30.
We complement the literature on the statistical mechanics of point vortices in two-dimensional hydrodynamics. Using a maximum entropy principle, we determine the multi-species Boltzmann-Poisson equation and establish a form of Virial theorem. Using a maximum entropy production principle (MEPP), we derive a set of relaxation equations towards statistical equilibrium. These relaxation equations can be used as a numerical algorithm to compute the maximum entropy state. We mention the analogies with the Fokker-Planck equations derived by Debye and Hückel for electrolytes. We then consider the limit of strong mixing (or low energy). To leading order, the relationship between the vorticity and the stream function at equilibrium is linear and the maximization of the entropy becomes equivalent to the minimization of the enstrophy. This expansion is similar to the Debye-Hückel approximation for electrolytes, except that the temperature is negative instead of positive so that the effective interaction between like-sign vortices is attractive instead of repulsive. This leads to an organization at large scales presenting geometry-induced phase transitions, instead of Debye shielding. We compare the results obtained with point vortices to those obtained in the context of the statistical mechanics of continuous vorticity fields described by the Miller-Robert-Sommeria (MRS) theory. At linear order, we get the same results but differences appear at the next order. In particular, the MRS theory predicts a transition between sinh and tanh-like ω ? ψ relationships depending on the sign of Ku ? 3 (where Ku is the Kurtosis) while there is no such transition for point vortices which always show a sinh-like ω ? ψ relationship. We derive the form of the relaxation equations in the strong mixing limit and show that the enstrophy plays the role of a Lyapunov functional.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号