首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   5篇
  国内免费   2篇
化学   94篇
晶体学   4篇
力学   5篇
数学   7篇
物理学   50篇
  2024年   2篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   4篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   4篇
  2015年   3篇
  2014年   4篇
  2013年   11篇
  2012年   11篇
  2011年   10篇
  2010年   5篇
  2009年   14篇
  2008年   21篇
  2007年   10篇
  2006年   5篇
  2005年   4篇
  2004年   11篇
  2003年   7篇
  2002年   6篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
排序方式: 共有160条查询结果,搜索用时 31 毫秒
151.
Vibrational spectral analysis of the hydrogen‐bonded nonlinear optical (NLO) material p‐bromo acetanilide (PBA) was carried out using NIR‐FT‐Raman and FT‐IR spectroscopy. Ab initio molecular orbital computations were performed at HF/6‐31G (d) level to derive equilibrium geometry, vibrational wavenumbers, intensities and first hyperpolarizability. The lowering of the imino stretching wavenumbers suggests the existence of strong intermolecular N H···O hydrogen bonding, which was substantiated by the natural bond orbital (NBO) analysis. The vibrational spectra confirm that the charge‐transfer interaction between the  NHCOCH3 group and—Br through phenyl ring is responsible for simultaneous strong IR and Raman activation of the ring mode 8a. Vibrational analysis indicates that the lowering of stretching wavenumbers of methyl group due to electronic effects simultaneously caused by induction and hyperconjugation is due to the presence of the oxygen atom. The presence of blue‐shifting H‐bonds of CH stretching wavenumbers, simultaneous activation of carbonyl stretching mode, the strong activity of low‐wavenumber H‐bond stretching vibrations and the role of intramolecular charge transfer in making the molecule NLO active have been analyzed on the basis of the vibrational spectral features. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
152.
We report here a highly diastereoselective multicomponent synthesis of imidazolines. These low molecular weight scaffolds contain a four-point diversity applicable to alkyl, aryl, acyl, and hetereocyclic substitutions. [structure: see text]  相似文献   
153.
Ultrasonic investigation has been carried out on six ternary systems to establish the complex formation between p-chloranil (acceptor) and six aromatic hydrocarbons (donors), namely, benzene, toluene, o-xylene, m-xylene, p-xylene and mesitylene in DMSO medium at 303.15 K and at atmospheric pressure. Studies were carried out in the concentration range of 0.002 to 0.02 M of acceptor and donor with equimolar concentration of the two components in solution. The trend in the acoustical parameters and magnitude of excess thermo acoustical parameters has been used to identify the existence of strong intermolecular interaction through charge transfer complex formation. The formation of 1:1 complex was also confirmed by UV-Visible spectroscopic method at 303.15 K in these systems. It may be pointed out that the formation constants of the charge transfer complexes determined by Benesi-Hildebrand (spectroscopic) and Kannappan (ultrasonic) methods show similar trend and well establish the influence of structural aspect of the donor aromatic compounds on the stability of charge transfer complexes.  相似文献   
154.
Cell-based therapies for wound repair are limited by inefficient delivery systems that fail to protect cells from the acute inflammatory environment. Here, a biomimetic hydrogel system is described that is based on the polymer pullulan, a carbohydrate glucan known to exhibit potent antioxidant capabilities. It is shown that pullulan hydrogels are an effective cell delivery system and improve mesenchymal stem cell survival and engraftment in high-oxidative-stress environments. The results suggest that glucan hydrogel systems may prove beneficial for progenitor-cell-based approaches to skin regeneration.  相似文献   
155.
Xiao Z  Zhao Y  Wang A  Perumal J  Kim DP 《Lab on a chip》2011,11(1):57-62
We present a low cost and practical approach to integrate 3D ordered macroporous polyfluoropolyether (PFPE) patterns into a microchannel by a series of porous pattern fabrication processes and subsequent photolithography in a site- and shape-selective manner. The 3D ordered macroporous patterns with high-resolution edges were firstly fabricated by microtransfer molding (μ-TM) of the sacrificial polystyrene (PS) template infiltrated with PFPE as a non-adhesive and solvent-resistant skeletal material. The resulting robust PFPE porous structures with high solvent resistance on a silicon wafer can easily be embedded into the microchannel with the aid of conventional photolithography, leading to a microfluidic system with a built-in microstructure. Moreover, catalytic Pd nanoparticles implanted on the surface of the porous structure were obtained by use of Pd nanoparticle deposited PS spheres, the porous structure embedded channel was utilized to perform a Suzuki coupling reaction.  相似文献   
156.
This study aims at the formulation of curcumin with biodegradable thermoresponsive chitosan-g-poly (N-vinylcaprolactam) nanoparticles (TRC-NPs) for cancer drug delivery. The spherical curcumin-loaded nanoparticles of size 220 nm were characterized, and the biological properties were studied using flow cytometry and cytotoxicity by MTT assay. The in vitro drug release was higher at above LCST compared to that at below LCST. TRC-NPs in the concentration range of 100-1000 μg/mL were non-toxic to an array of cell lines. The cellular localization of the curcumin-loaded TRC-NPs was confirmed from green fluorescence inside the cells. The time-dependent curcumin uptake by the cells was quantified by UV spectrophotometer. Curcumin-loaded TRC-NPs showed specific toxicity to cancer cells at above their LCST. Flow cytometric analysis showed increased apoptosis on PC3 compared to L929 by curcumin-loaded TRC-NPs. These results indicate that novel curcumin-loaded TRC-NPs could be a promising candidate for cancer drug delivery.  相似文献   
157.
ZK60A nanocomposite containing Al2O3 nanoparticle reinforcement (50 nm average size) was fabricated using solidification processing followed by hot extrusion. The nanocomposite exhibited similar grain size to the monolithic alloy, reasonable Al2O3 nanoparticle distribution, non-dominant (0 0 0 2) texture in the longitudinal direction, and 15% higher hardness than the monolithic alloy. Compared to the monolithic alloy (in tension), the nanocomposite exhibited lower yield strength (0.2%TYS) (−4%) and higher ultimate strength (UTS), failure strain, and work of fracture (WOF) (+13%, +170%, and +200%, respectively). Compared to the monolithic alloy (in compression), the nanocomposite exhibited lower yield strength (0.2%CYS) (−5%) and higher ultimate strength (UCS), failure strain, and WOF (+6%, +41%, and +43%, respectively). The effects of Al2O3 nanoparticle addition on the enhancement of tensile and compressive properties of ZK60A are investigated in this article.  相似文献   
158.
Journal of Solid State Electrochemistry - For the first time, nanorods of nickel zincate (NiZnO2) have been synthesized by the hydrothermal method and used in supercapacitor electrode fabrication....  相似文献   
159.
160.
The optimized geometry and structural features of the most prospective electro‐optic crystal 4‐(N,N‐dimethylamino)‐N‐methyl‐4′‐toluene sulfonate (DAST), and the vibrational spectral investigations have been comprehensively described with the near infrared Fourier transform (NIR FT) Raman and Fourier transform infrared (FT‐IR) spectra supported by the density functional theoretical (DFT) computations to elucidate the contribution of vibrational modes to the linear electro‐optic (LEO) effect. Mulliken population analysis and natural bond orbital (NBO) analysis have also been carried out to analyze the effects of intramolecular charge transfer (ICT), intramolecular hydrogen bonding and hyperconjugative interactions on the geometries. The influence of CT interaction between the phenyl ring and the dimethylamino group of the nonlinear optical (NLO) chromophore on the endocyclic and exocyclic angles, and the electronic effects such as hyperconjugation and back‐donation on the methyl hydrogen atoms have been examined. The concurrent intense activation of Raman and IR activities of the effective conjugation vibrational coordinate, which significantly contributes to the LEO effect resulting from the strong electron–phonon (e/ph) coupling, has been analyzed in detail. The effects of frontier orbitals, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), transition of electron density (ED) transfer and the influence of planarity in the stilbazolium ring on the first hyperpolarizability are also discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号