首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7957篇
  免费   1257篇
  国内免费   745篇
化学   5586篇
晶体学   132篇
力学   475篇
综合类   72篇
数学   784篇
物理学   2910篇
  2024年   20篇
  2023年   172篇
  2022年   247篇
  2021年   273篇
  2020年   367篇
  2019年   342篇
  2018年   289篇
  2017年   244篇
  2016年   404篇
  2015年   386篇
  2014年   516篇
  2013年   591篇
  2012年   657篇
  2011年   693篇
  2010年   457篇
  2009年   374篇
  2008年   498篇
  2007年   425篇
  2006年   379篇
  2005年   322篇
  2004年   214篇
  2003年   218篇
  2002年   166篇
  2001年   124篇
  2000年   154篇
  1999年   151篇
  1998年   129篇
  1997年   131篇
  1996年   151篇
  1995年   111篇
  1994年   108篇
  1993年   89篇
  1992年   78篇
  1991年   69篇
  1990年   72篇
  1989年   47篇
  1988年   49篇
  1987年   37篇
  1986年   37篇
  1985年   26篇
  1984年   22篇
  1983年   15篇
  1982年   19篇
  1981年   15篇
  1980年   11篇
  1979年   7篇
  1975年   5篇
  1974年   5篇
  1970年   12篇
  1937年   5篇
排序方式: 共有9959条查询结果,搜索用时 125 毫秒
871.
872.
An unprecedented single electron redox process in copper catalysis is confirmed using operando X-ray absorption and EPR spectroscopies. The oxidation state of the copper species in the interaction between Cu(ii) and a sulfinic acid at room temperature, and the accurate characterization of the formed Cu(i) are clearly shown using operando X-ray absorption and EPR evidence. Further investigation of anion effects on Cu(ii) discloses that bromine ions can dramatically increase the rate of the redox process. Moreover, it is proven that the sulfinic acids are converted into sulfonyl radicals, which can be trapped by 2-arylacrylic acids and various valuable β-keto sulfones are synthesized with good to excellent yields under mild conditions.  相似文献   
873.
Chen  Yinji  Yao  Li  Deng  Yi  Pan  Daodong  Ogabiela  Edward  Cao  Jinxuan  Adeloju  Samuel B.  Chen  Wei 《Mikrochimica acta》2015,182(13):2147-2154

The article describes a method for rapid and visual determination of Hg(II) ion using unmodified gold nanoparticles (Au-NPs). It involves the addition of Au-NPs to a solution containing Hg(II) ions which, however, does not induce a color change. Next, a solution of lysine is added which induces the aggregation of the Au-NPs and causes the color of the solution to change from wine-red to purple. The whole on-site detection process can be executed in less than 15 min. Other amines (ethylenediamine, arginine, and melamine) were also investigated with respect to their capability to induce aggregation. Notably, only amines containing more than one amino group were found to be effective, but a 0.4 μM and pH 8 solution of lysine was found to give the best results. The detection limits for Hg (II) are 8.4 pM (for instrumental read-out) and 10 pM (for visual read-out). To the best of our knowledge, this LOD is better than those reported for any other existing rapid screening methods. The assay is not interfered by the presence of other common metal ions even if present in 1000-fold excess over Hg(II) concentration. It was successfully applied to the determination of Hg(II) in spiked tap water samples. We perceive that this method provides an excellent tool for rapid and ultrasensitive on-site determination of Hg(II) ions at low cost, with relative ease and minimal operation.

Rapid and ultrasensitive detection of mercury ions using gold nanoparticle based label-free colorimetric method with excellent sensitivity, easy operation and low cost.

  相似文献   
874.
A series of 5‐aryl‐1H‐pyrazole derivatives were synthesized via the reaction of 3‐(dimethylamino)‐1‐arylprop‐2‐en‐1‐one with hydrazine in aqueous media without using any catalyst. This method has the advantages of easier work‐up, mild reaction condition, high yields, and an environmentally benign procedure.  相似文献   
875.
876.
In this research, the graphene with excellent dispersity is prepared successfully by introducing gold nanoparticle to separate the individual sheets. Various techniques are adopted to characterize the prepared graphene and graphene-gold nanoparticle composite materials. This fabricated new composite material is used as the support material to construct a novel tyrosinase based biosensor for detection of bisphenol A (BPA). The electrochemical performances of the proposed new enzyme biosensor were investigated by differential pulse voltammetry (DPV) method. The proposed biosensor exhibited excellent performance for BPA determination with a wide linear range (2.5 × 10−3–3.0 μM), a highly reproducible response (RSD of 2.7%), low interferences and long-term stability. And more importantly, the calculated detection limit of the proposed biosensor was as low as 1 nM. Compared with other detection methods, this graphene-gold nanoparticle composite based tyrosinase biosensor is proved to be a promising and reliable tool for rapid detection of BPA for on-site analysis of emergency BPA related pollution affairs.  相似文献   
877.
Four kinds of green deep eutectic solvents (DESs) based on choline chloride (ChCl) have been synthesized and coated on the surface of magnetic graphene oxide (Fe3O4@GO) to form Fe3O4@GO-DES for the magnetic solid-phase extraction of protein. X-ray diffraction (XRD), vibrating sample magnetometer (VSM), Fourier transform infrared spectrometry (FTIR), field emission scanning electron microscopy (FESEM) and thermal gravimetric analysis (TGA) were employed to characterize Fe3O4@GO-DES, and the results indicated the successful preparation of Fe3O4@GO-DES. The UV–vis spectrophotometer was used to measure the concentration of protein after extraction. Single factor experiments proved that the extraction amount was influenced by the types of DESs, solution temperature, solution ionic strength, extraction time, protein concentration and the amount of Fe3O4@GO-DES. Comparison of Fe3O4@GO and Fe3O4@GO-DES was carried out by extracting bovine serum albumin, ovalbumin, bovine hemoglobin and lysozyme. The experimental results showed that the proposed Fe3O4@GO-DES performs better than Fe3O4@GO in the extraction of acidic protein. Desorption of protein was carried out by eluting the solid extractant with 0.005 mol L−1 Na2HPO4 contained 1 mol L−1 NaCl. The obtained elution efficiency was about 90.9%. Attributed to the convenient magnetic separation, the solid extractant could be easily recycled.  相似文献   
878.
Glucose detection plays very important roles in diagnostics and management of diabetes. The search for novel catalytic materials with appropriate architectures is the key step in the fabrication of highly sensitive glucose sensors. In this work, α-Ni(OH)2 roselike structures (Ni(OH)2-RS) assembled from nanosheet building blocks were successfully synthesized by a hydrothermal method through the hydrolysis of nickel chloride in the mixed solvents of water and ethanol with the assistance of polyethylene glycol (PEG). The structure and morphology of the roselike α-Ni(OH)2 were characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and N2 adsorption–desorption isotherm measurement. TEM and FE-SEM images showed that the synthesized Ni(OH)2 was roselike and the size of the leaf-shaped nanosheet was about 5 nm in thickness, which leads to larger active surface areas and faster electron transfer for the detection of glucose. Compared with the bare GCE and bulk Ni(OH)2/GCE, the Ni(OH)2-RS/GCE had higher catalytic activity toward the oxidation of glucose. Under the optimal conditions, the Ni(OH)2-RS/GCE offers a variety of merits, such as a wide linear response window for glucose concentrations ranging from 0.87 μM to 10.53 mM, short response time (3 s), a lower detection limit of 0.08 μM (S/N = 3), as well as long term stability and repeatability.  相似文献   
879.
880.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号