首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   834篇
  免费   51篇
化学   634篇
晶体学   7篇
力学   37篇
数学   42篇
物理学   165篇
  2023年   3篇
  2022年   19篇
  2021年   15篇
  2020年   20篇
  2019年   11篇
  2018年   10篇
  2017年   13篇
  2016年   38篇
  2015年   31篇
  2014年   31篇
  2013年   41篇
  2012年   58篇
  2011年   44篇
  2010年   40篇
  2009年   43篇
  2008年   49篇
  2007年   54篇
  2006年   44篇
  2005年   54篇
  2004年   49篇
  2003年   24篇
  2002年   34篇
  2001年   24篇
  2000年   12篇
  1999年   11篇
  1998年   8篇
  1997年   6篇
  1996年   10篇
  1995年   11篇
  1994年   8篇
  1993年   4篇
  1992年   8篇
  1991年   6篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   7篇
  1986年   3篇
  1985年   7篇
  1984年   8篇
  1983年   1篇
  1982年   1篇
  1981年   8篇
  1980年   1篇
  1976年   4篇
  1972年   1篇
  1968年   1篇
  1967年   2篇
  1966年   1篇
  1938年   1篇
排序方式: 共有885条查询结果,搜索用时 156 毫秒
871.
Concerted functioning of lectins and carbohydrate‐processing enzymes, mainly glycosidases, is essential in maintaining life. It was commonly assumed that the mechanisms by which each class of protein recognizes their cognate sugar partners are intrinsically different: multivalency is a characteristic feature of carbohydrate–lectin interactions, whereas glycosidases bind to their substrates or substrate‐analogue inhibitors in monovalent form. Recent observations on the glycosidase inhibitory potential of multivalent glycomimetics have questioned this paradigm and led to postulate an inhibitory multivalent effect. Here the mechanisms at the origin of this phenomenon have been investigated. A D ‐gluco‐configured sp2‐iminosugar glycomimetic motif, namely 1‐amino‐5N,6O‐oxomethylydenenojirimycin (1N‐ONJ), behaving, simultaneously, as a ligand of peanut agglutinin (PNA) lectin and as an inhibitor of several glycosidases, has been identified. Both the 1N‐ONJ–lectin‐ and 1N‐ONJ–glycosidase‐recognition processes have been found to be sensitive to multivalency, which has been exploited in the design of a lectin–glycosidase competitive assay to explore the implication of catalytic and non‐glycone sites in enzyme binding. A set of isotropic dodecavalent C60‐fullerene–sp2‐iminosugar balls incorporating matching or mismatching motifs towards several glycosidases (inhitopes) was synthesized for that purpose, thereby preventing differences in binding modes arising from orientational preferences. The data supports that: 1) multivalency allows modulating the affinity and selectivity of a given inhitope towards glycosidases; 2) multivalent presentation can switch on the inhibitory capacity for some inhitope–glycosidase pairs, and 3) interactions of the multivalent inhibitors with non‐glycone sites is critical for glycosidase recognition. The ensemble of results point to a shift in the binding mode on going from monovalent to multivalent systems: in the first case a typical ′′key–lock′′ model involving, essentially, the high‐affinity active site can be assumed, whereas in the second, a lectin‐like behavior implying low‐affinity non‐glycone sites probably operates. The differences in responsiveness to multivalency for different glycosidases can then be rationalized in terms of the structure and accessibility of the corresponding carbohydrate‐binding regions.  相似文献   
872.
Bovine pancreatic trypsin was immobilized on β- and γ-cyclodextrin coated gold nanospheres via supramolecular associations. The enzyme retained 100%–120% of its catalytic activity and its thermal stability at 50°C was 2–2.5 fold increased in the presence of the β- and γ-cyclodextrin modified metal nanoparticles, respectively. The influence of these immobilization processes on the conformational properties of the enzyme was studied by fluorescence spectroscopy. These results open a new perspective to the possible application of cyclodextrin-modified gold nanospheres as water-soluble carriers for enzyme immobilization.  相似文献   
873.
In Gaucher disease (GD), mutant β-glucocerebrosidases (β-GCase) that are misfolded are recognized by the quality control machinery of the endoplasmic reticulum (ER) and degraded proteolytically. Hydrophobic iminosugars can be used as pharmacological chaperones to provide an improvement in the folding of the enzyme and promote trafficking from the ER. We have developed here an efficient click procedure to tether hydrophobic substituents to N-azidopropyl-1-deoxynojirimycin. A set of 14 original iminosugars was designed and evaluated for inhibition of commercially available glucosidases. Most of the compounds were micromolar inhibitors of those enzymes. In vitro inhibition assays with the N370S β-GCase revealed that the sublibrary containing the derivatives with aromatic aglycons displayed the highest inhibitory potency. Chaperone activity of the whole set of synthetic compounds was also explored in mutant Gaucher cells. The most active compound gave a nearly 2-fold increase in enzyme activity at 20 μM, a significantly higher value than the 1.33-fold recorded for the reference compound N-nonyl-1-deoxynojirimycin (N-nonyl-DNJ). As previously reported with bicyclic sp(2)-iminosugars (Luan, Z.; Higaki, K.; Aguilar-Moncayo, M.; Ninomiya, H.; Ohno, K.; Garci?a-Moreno, M. I.; Ortiz Mellet, C.; Garci?a Ferna?ndez, J. M.; Suzuki, Y. ChemBioChem 2009, 10, 2780), in vitro inhibition of β-GCase measured for the compounds did not correlate with the cellular chaperone activity. The potency of new iminosugar chaperones is therefore not predictable from structure-activity relationships studies based on the in vitro β-GCase inhibition.  相似文献   
874.
The analytical parameters of the microplate-based oxygen radicals absorbance capacity (ORAC) method using pyrogallol red (PGR) as probe (ORAC-PGR) are presented. In addition, the antioxidant capacity of commercial beverages, such as wines, fruit juices, and iced teas, is estimated. A good linearity of the area under the curve (AUC) versus Trolox concentration plots was obtained [AUC = (845 +/- 110) + (23 +/- 2) [Trolox, microM], R = 0.9961, n = 19]. QC experiments showed better precision and accuracy at the highest Trolox concentration (40 microM) with RSD and REC (recuperation) values of 1.7 and 101.0%, respectively. When red wine was used as sample, the method also showed good linearity [AUC = (787 +/- 77) + (690 +/- 60) [red wine, microL/mL]; R = 0.9926, n = 17], precision and accuracy with RSD values from 1.4 to 8.3%, and REC values that ranged from 89.7 to 103.8%. Additivity assays using solutions containing gallic acid and Trolox (or red wine) showed an additive protection of PGR given by the samples. Red wines showed higher ORAC-PGR values than white wines, while the ORAC-PGR index of fruit juices and iced teas presented a great variability, ranging from 0.6 to 21.6 mM of Trolox equivalents. This variability was also observed for juices of the same fruit, showing the influence of the brand on the ORAC-PGR index. The ORAC-PGR methodology can be applied in a microplate reader with good linearity, precision, and accuracy.  相似文献   
875.
Semiconductor-like thin films were grown using metallic phthalocyanines (MPc) (M=Fe, Pb, Co) and 1,8 dihydroxiantraquinone as initial compounds. The morphology of the deposited films was studied by using scanning electron microscopy and atomic force microscopy. The powder and thin-film samples of the synthesized materials, deposited by vacuum thermal evaporation, showed the same intra-molecular bonds as in IR spectroscopy studies, which suggests that the evaporation process does not alter these bonds. The optical band gap values of C60H28N8O8Fe, C60H28N8O8Pb and C60H28N8O8Co calculated from the absorption coefficient were found to be 1.60, 1.89 and 1.75 eV, respectively, arising from non-direct transitions. The effect of temperature on conductivity was also measured in these samples. It was found that the temperature-dependent electric current in all cases showed a semiconductor behavior with conductivities in the order of 10−6 Ω−1 cm−1 where the highest value corresponded to the cobalt material. The linear dependence observed in the films implies only one type of conduction mechanism in all cases, with mean activation energies of the order of 1.55, 1.77 and 1.50 eV for iron, lead and cobalt-based thin films, respectively.  相似文献   
876.
We present a geometric characterization of the ferrotoroidic moment tau in terms of a set of Abelian Berry phases. We also introduce a fundamental complex quantity z munu, which provides an alternative way to calculate tau and its moments and is derived from the tensor T munu=2 under summation operator jrj muSj nu. This geometric framework defines a natural computational approach for density functional and many-body theories.  相似文献   
877.
The depinning transition of Vortex Matter in the presence of antidots in superconducting Nb films has been investigated. The antidots were fabricated using two different techniques, resulting in samples with arrays of diverse pinning efficiency. At low temperatures and fields, the spatial arrangement of Vortex Matter is governed by the presence of the antidots. Keeping the temperature fixed, an increase of the field induces a depinning transition. As the temperature approaches Tc, the depinning frontier exhibits a characteristic kink at the temperature Tk, above which the phase boundary exhibits a different regime. The lower-temperature regime is adequately described by a power-law expression, whose exponent n was observed to be inversely proportional to the pinning capability of the antidot, a feature that qualifies this parameter as a figure of merit to quantify the pinning strength of the defect.  相似文献   
878.
Wet tensile testing is a common method to assess the stability of bentonite-bonded moulding sands. For wet tensile testing, a specimen is first heated from above in order to simulate heat-driven moisture transport induced by the casting process. Then, tensile stress is applied until rupture. In this study, neutron radiography imaging was applied to moulding sands in situ during heating and wet tensile testing in order to investigate the effects of water kinematics on the tensile strength. Neutron radiography allowed the localization of the rupture plane and the quantitative determination of the local water content with sub-mm resolution. Quantification of the temperature at the rupture plane and of the heat kinematics within the specimen was accomplished by temperature measurements both in situ and ex situ. In this way, experimental data correlating the wet tensile strength with the specific conditions of moulding sands at the rupture plane were obtained for the first time. Series of experiments with different initial sand moisture contents were conducted. The results show that the weakest location within a sand profile can be pinpointed at the interface between evaporation and condensation zone (i.e. at the 100 \(^\circ \)C isotherm), where water vaporization starts and the water bridges connecting the sand grains collapse. This weakest location has maximum strength, if the local water content at the rupture plane is between 5 and 9 wt.%. Less water leads to a strong decrease of wet tensile strength. More water requires an initial water content above 5 wt.%, which leads to a decrease of the tensile strength of the unheated sand.  相似文献   
879.
For over 20 years, researchers have agreed that when pentacesium trihydrogen tetrasulfate hydrate (Cs5H3(SO4)4·xH2O) is heated through 141 °C, the observed conductivity increase corresponds to a physical transformation: a first-order superprotonic phase transition. A careful high-temperature phase behavior examination of this acid salt was performed by means of simultaneous thermogravimetric and differential scanning calorimetry, conventional and modulated differential scanning calorimetry, and impedance spectroscopy. The results present evidence that this transformation is of chemical, instead of physical nature. The conductivity increase is an exclusive consequence of a partial thermal decomposition, where liquid water (dissolving part of the surface salt) and hygroscopic cesium pyrosulfate (Cs2S2O7), as decomposition products, behave like a polymer electrolyte membrane where the proton transport mechanism includes the vehicle type, using hydronium (H3O+) as a charge carrier. Additionally, it was found that the intermediate temperature transformation (so-called isostructural phase transition) at around 87 °C is also of chemical nature.  相似文献   
880.
Ruthenium-catalyzed hydrogen auto-transfer reactions for the direct enantioselective conversion of lower alcohols to higher alcohols are surveyed. These processes enable completely atom-efficient carbonyl addition from alcohol proelectrophiles in the absence of premetalated reagents or metallic reductants. Applications in target-oriented synthesis are highlighted, and a brief historical perspective on ruthenium-catalyzed hydrogen transfer processes is given.

Ruthenium-catalyzed hydrogen auto-transfer reactions for the direct enantioselective conversion of lower alcohols to higher alcohols are surveyed. A brief historical perspective on ruthenium-catalyzed hydrogen transfer is given.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号