首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   0篇
力学   97篇
数学   4篇
物理学   35篇
  2017年   1篇
  2016年   1篇
  2014年   3篇
  2013年   3篇
  2012年   10篇
  2011年   2篇
  2010年   6篇
  2009年   3篇
  2008年   7篇
  2007年   3篇
  2006年   1篇
  2004年   5篇
  2003年   4篇
  2002年   2篇
  2001年   5篇
  2000年   2篇
  1999年   6篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   6篇
  1991年   6篇
  1990年   7篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   4篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1975年   4篇
  1974年   5篇
  1973年   1篇
  1972年   1篇
  1967年   1篇
排序方式: 共有136条查询结果,搜索用时 15 毫秒
91.
92.
Adnan H. Nayfeh 《Physica A》1977,88(3):551-560
We develop formal solutions for the propagation of transient pulses on a variety of bi-lattice models. The lattices are composed of a finite homogeneous chain connected in series with a different semi-infinite homogeneous chain at a common location occupied by a single mass which is different from the masses of both chains. Exact analytic solutions of this general case are not possible. Some analytic solutions are, however, possible for a variety of special cases. The general solutions are illustrated by numerically inverting the Laplace transform functions. The exact solutions are found to correlate very well with the numerical inversion scheme. Such correlations give confidence in the numerical scheme's predictions of the solutions of the more complicated chains.  相似文献   
93.
The explicit speed dependency of the coefficients in the linear equations of ship motion is determined from an energy formulation of the problem as opposed to the usual strip-theory formulation. For a completely symmetrical (longitudinal and lateral) ship, the cross-coupled damping coefficients resulting from the energy approach are shown to satisfy the Timman and Newman symmetry theorem identically. For ships possessing lateral symmetry only, a different form of symmetry among the cross-coupled damping coefficient is found to exist. The results of the energy approach are found to agree quite well with the results of three strip-theory formulations regarding the speed dependency of the coefficients in the heave and pitch equations.  相似文献   
94.
Volume Contents     

Volume Contents

Volume Contents  相似文献   
95.
A method for analyzing multidegree-of-freedom systems having a repeated natural frequency subjected to a parametric excitation is presented. Attention is given to the ordering of the various terms (linear and non-linear) in the governing equations. The analysis is based on the method of multiple scales. As a numerical example involving a parametric resonance, panel flutter is discussed in detail in order to illustrate the type of results one can expect to obtain with this analysis. Some of the analytical results are verified by a numerical integration of the governing equations.  相似文献   
96.
We present a collection of experimental results on the influence of modal interactions (i.e., internal or autoparametric resonances) on the nonlinear response of flexible metallic and composite structures subjected to a range of resonant excitations. The experimental results are provided in the form of frequency spectra, Poincaré sections, pseudo-phase planes, dimension calculations, and response curves. Experimental observations of transitions from periodic to chaotically modulated motions are also presented. We also discuss relevant analytical results. The current study is also relevant to other internally resonant structural systems.  相似文献   
97.
98.
We develop a new technique for preshaping input commands to control microelectromechanical systems (MEMS). In general, MEMS are excited using an electrostatic field which is a nonlinear function of the states and the input voltage. Due to the nonlinearity, the frequency of the device response to a step input depends on the input magnitude. Therefore, traditional shaping techniques which are based on linear theory fail to provide good performance over the whole input range. The technique we propose combines the equations describing the static response of the device, an energy balance argument, and an approximate nonlinear analytical solution of the device response to preshape the voltage commands. As an example, we consider set-point stabilization of an electrostatically actuated torsional micromirror. The shaped commands are applied to drive the micromirror to a desired tilt angle with zero residual vibrations. Simulations show that fast mirror switching operation with almost zero overshoot can be realized using this technique. The proposed methodology accounts for the energy of the significant higher modes and can be used to shape input commands applied to other nonlinear micro- and macro-systems.  相似文献   
99.
We compare two approaches for determining the normal forms of Hopf bifurcations in retarded nonlinear dynamical systems; namely, the method of multiple scales and a combination of the method of normal forms and the center-manifold theorem. To describe and compare the methods without getting involved in the algebra, we consider three examples: a scalar equation, a single-degree-of-freedom system, and a three-neuron model. The method of multiple scales is directly applied to the retarded differential equations. In contrast, in the second approach, one needs to represent the retarded equations as operator differential equations, decompose the solution space of their linearized form into stable and center subspaces, determine the adjoint of the operator equations, calculate the center manifold, carry out details of the projection using the adjoint of the center subspace, and finally calculate the normal form on the center manifold. We refer to the second approach as center-manifold reduction. Finally, we consider a problem in which the retarded term appears as an acceleration and treat it using the method of multiple scales only. Communicated by G. Rega  相似文献   
100.
We develop a mathematical model for a resonant gas sensor made up of an microplate electrostatically actuated and attached to the end of a cantilever microbeam. The model considers the microbeam as a continuous medium, the plate as a rigid body, and the electrostatic force as a nonlinear function of the displacement and the voltage applied underneath the microplate. We derive closed-form solutions to the static and eigenvalue problems associated with the microsystem. The Galerkin method is used to discretize the distributed-parameter model and, thus, approximate it by a set of nonlinear ordinary-differential equations that describe the microsystem dynamics. By comparing the exact solution to that associated with the reduced-order model, we show that using the first mode shape alone is sufficient to approximate the static behavior. We employ the Finite Difference Method (FDM) to discretize the orbits of motion and solve the resulting nonlinear algebraic equations for the limit cycles. The stability of these cycles is determined by combining the FDM discretization with Floquet theory. We investigate the basin of attraction of bounded motion for two cases: unforced and damped, and forced and damped systems. In order to detect the lower limit of the forcing at which homoclinic points appear, we conduct a Melnikov analysis. We show the presence of a homoclinic point for a loading case and hence entanglement of the stable and unstable manifolds and non-smoothness of the boundary of the basin of attraction of bounded motion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号