首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   0篇
力学   97篇
数学   4篇
物理学   35篇
  2017年   1篇
  2016年   1篇
  2014年   3篇
  2013年   3篇
  2012年   10篇
  2011年   2篇
  2010年   6篇
  2009年   3篇
  2008年   7篇
  2007年   3篇
  2006年   1篇
  2004年   5篇
  2003年   4篇
  2002年   2篇
  2001年   5篇
  2000年   2篇
  1999年   6篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   6篇
  1991年   6篇
  1990年   7篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   4篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1975年   4篇
  1974年   5篇
  1973年   1篇
  1972年   1篇
  1967年   1篇
排序方式: 共有136条查询结果,搜索用时 15 毫秒
81.
We investigate some of the instabilities in a single-machine quasi-infinite busbar system. The system's behavior is described by the so-called swing equation, which is a nonlinear second-order ordinary-differential equation with additive and multiplicative harmonic terms having the frequency . When 0, where 0 is the linear natural frequency of the machine, we use digital-computer simulations to exhibit some of the complicated responses of the machine, including period-doubling bifurcations, chaotic motions, and unbounded motions (loss of synchronism). To predict the onset of these complicated behaviors, we use the method of multiple scales to develop an approximate first-order closed-form expression for the period-one responses of the machine. Then, we use various techniques to determine the stability of the analytical solutions. The analytically predicted period-one solutions and conditions for its instability are in good agreement with the digital-computer results.  相似文献   
82.
Presented here is a general theory for the three-dimensional nonlinear dynamics of elastic anisotropic initially straight beams undergoing moderate displacements and rotations. The theory fully accounts for geometric nonlinearities (large rotations and displacements) by using local stress and strain measures and an exact coordinate transformation, which result in nonlinear curvature and strain-displacement expressions that contain the von Karman strains as a special case. Extensionality is included in the formulation, and transverse shear deformations are accounted for by using a third-order theory. Six third-order nonlinear partial-differential equations are derived for describing one extension, two bending, one torsion, and two shearing vibrations of composite beams. They show that laminated beams display linear elastic and nonlinear geometric couplings among all motions. The theory contains, as special cases, the Euler-Bernoulli theory, Timoshenko's beam theory, the third-order shear theory, and the von Karman type nonlinear theory.  相似文献   
83.
Three nonlinear integro-differential equations of motion derived in Part I are used to investigate the forced nonlinear vibration of a symmetrically laminated graphite-epoxy composite beam. The analysis focuses on the case of primary resonance of the first in-plane flexural (chordwise) mode when its frequency is approximately twice the frequency of the first out-of-plane flexural-torsional (flapwise-torsional) mode. A combination of the fundamental-matrix method and the method of multiple scales is used to derive four first-order ordinary-differential equations describing the modulation of the amplitudes and phases of the interacting modes with damping, nonlinearity, and resonances. The eigenvalues of the Jacobian matrix of the modulation equations are used to determine the stability of their constant solutions, and Floquet theory is used to determine the stability and bifurcations of their limit-cycle solutions. Hopf bifurcations, symmetry-breaking bifurcations, period-multiplying sequences, and chaotic motions of the modulation equations are studied. The results show that the motion can be nonplanar although the input force is planar. Nonplanar responses may be periodic, periodically modulated, or chaotically modulated motions.  相似文献   
84.
A novel approach for implementing an active nonlinear vibration absorber is presented. The absorber, which is built in electronic circuitry, takes advantage of the saturation phenomenon that occurs when two natural frequencies of a system with quadratic nonlinearities are in the ratio of two-to-one. When the system is excited at a frequency near the higher natural frequency, there is a small ceiling for the system response at the higher frequency and the rest of the input energy is channeled to the low-frequency mode.A working model of using saturation to suppress the vibrations of a rigid beam connected to a DC motor has been built. An electronic oscillator is built, and its frequency is set at one-half the frequency of the beam. The output from a sensor on the beam is multiplied by the output from the electronic oscillator and a suitable gain, and the result is used as the forcing term for the oscillator. At the same time, the output from the oscillator is squared and multiplied by a suitable gain, and that result is used as the input to the motor. The oscillator/actuator and the beam act as the two modes of a two-degree-of-freedom quadratically coupled system with a 2:1 autoparametric resonance. When the beam is excited by a harmonic force, its motion quickly becomes saturated, and most of the energy imparted to the beam by the harmonic force is transferred to the electronic circuit and from there to the actuator. Thus, the harmonic force is made to work against itself. As a result, the motion of the beam always remains small.  相似文献   
85.
We study motions near a Hopf bifurcation of a representative nonconservative four-dimensional autonomous system with quadratic nonlinearities. Special cases of the four-dimensional system represent the envelope equations that govern the amplitudes and phases of the modes of an internally resonant structure subjected to resonant excitations. Using the method of multiple scales, we reduce the Hopf bifurcation problem to two differential equations for the amplitude and phase of the bifurcating cyclic solutions. Constant solutions of these equations provide asymptotic expansions for the frequency and amplitude of the bifurcating limit cycle. The stability of the constant solutions determines the nature of the bifurcation (i.e., subcritical or supercritical). For different choices of the control parameter, the range of validity of the analytical approximation is ascertained using numerical simulations. The perturbation analysis and discussions are also pertinent to other autonomous systems.  相似文献   
86.
87.
Adnan H. Nayfeh 《Physica A》1977,88(3):551-560
We develop formal solutions for the propagation of transient pulses on a variety of bi-lattice models. The lattices are composed of a finite homogeneous chain connected in series with a different semi-infinite homogeneous chain at a common location occupied by a single mass which is different from the masses of both chains. Exact analytic solutions of this general case are not possible. Some analytic solutions are, however, possible for a variety of special cases. The general solutions are illustrated by numerically inverting the Laplace transform functions. The exact solutions are found to correlate very well with the numerical inversion scheme. Such correlations give confidence in the numerical scheme's predictions of the solutions of the more complicated chains.  相似文献   
88.
The explicit speed dependency of the coefficients in the linear equations of ship motion is determined from an energy formulation of the problem as opposed to the usual strip-theory formulation. For a completely symmetrical (longitudinal and lateral) ship, the cross-coupled damping coefficients resulting from the energy approach are shown to satisfy the Timman and Newman symmetry theorem identically. For ships possessing lateral symmetry only, a different form of symmetry among the cross-coupled damping coefficient is found to exist. The results of the energy approach are found to agree quite well with the results of three strip-theory formulations regarding the speed dependency of the coefficients in the heave and pitch equations.  相似文献   
89.
Stringent weight and size constraints on flapping-wing microair-vehicles dictate minimal actuation. Unfortunately, hovering and forward flight require different wing motions and, as such, independent actuators. Therefore, either a hovering or a forward-flight requirement should be included in the mission and design statements of a flapping-wing microair-vehicle. This work proposes a design for an actuation mechanism that would provide the required kinematics in each flight condition using only one actuator. The idea is to exploit the nonlinear dynamics of the flapping wing to induce the saturation phenomenon. One physical spring in the plunging direction is needed along with a feedback of the plunging angle into the control torque of the actuator in the back and forth flapping direction. By detuning the feedback gains away from the saturation requirement, we obtain the flapping kinematics required for hovering. In contrast, tuning the feedback gains to induce the saturation phenomenon transfers the motion into the plunging direction. Moreover, the actuating torque (in the back and forth flapping direction) would then provide a direct control over the amplitude of the plunging motion, while the amplitude of the actuated flapping motion saturates and does not change as the amplitude of the actuating torque increases.  相似文献   
90.
We present a single-input single-output multimode delayed-feedback control methodology to mitigate the free vibrations of a flexible cantilever beam. For the purpose of controller design and stability analysis, we consider a reduced-order model consisting of the first n vibration modes. The temporal variation of these modes is represented by a set of nonlinearly coupled ordinary-differential equations that capture the evolving dynamics of the beam. Considering a linearized version of these equations, we derive a set of analytical conditions that are solved numerically to assess the stability of the closed-loop system. To verify these conditions, we characterize the stability boundaries using the first two vibration modes and compare them to damping contours obtained by long-time integration of the full nonlinear equations of motion. Simulations show excellent agreement between both approaches. We analyze the effect of the size and location of the piezoelectric patch and the location of the sensor on the stability of the response. We show that the stability boundaries are highly dependent on these parameters. Finally, we implement the controller on a cantilever beam for different controller gain-delay combinations and assess the performance using time histories of the beam response. Numerical simulations clearly demonstrate the controller ability to mitigate vibrations emanating from multiple modes simultaneously.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号