首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   806篇
  免费   25篇
  国内免费   2篇
化学   512篇
晶体学   19篇
力学   17篇
数学   54篇
物理学   231篇
  2024年   2篇
  2023年   13篇
  2022年   39篇
  2021年   22篇
  2020年   39篇
  2019年   33篇
  2018年   24篇
  2017年   44篇
  2016年   38篇
  2015年   22篇
  2014年   39篇
  2013年   78篇
  2012年   44篇
  2011年   61篇
  2010年   20篇
  2009年   27篇
  2008年   37篇
  2007年   39篇
  2006年   28篇
  2005年   24篇
  2004年   20篇
  2002年   13篇
  2001年   10篇
  2000年   8篇
  1999年   7篇
  1998年   9篇
  1997年   8篇
  1996年   2篇
  1994年   3篇
  1993年   4篇
  1991年   4篇
  1990年   8篇
  1989年   2篇
  1988年   5篇
  1987年   3篇
  1986年   3篇
  1984年   6篇
  1983年   4篇
  1982年   4篇
  1981年   2篇
  1980年   7篇
  1979年   2篇
  1978年   7篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1974年   4篇
  1973年   2篇
  1971年   2篇
  1970年   1篇
排序方式: 共有833条查询结果,搜索用时 15 毫秒
21.
We designed and demonstrated the unique abilities of the first gas chromatography–molecular rotational resonance spectrometer (GC-MRR). While broadly and routinely applicable, its capabilities can exceed those of high-resolution MS and NMR spectroscopy in terms of selectivity, resolution, and compound identification. A series of 24 isotopologues and isotopomers of five organic compounds are separated, identified, and quantified in a single run. Natural isotopic abundances of mixtures of compounds containing chlorine, bromine, and sulfur heteroatoms are easily determined. MRR detection provides the added high specificity for these selective gas-phase separations. GC-MRR is shown to be ideal for compound-specific isotope analysis (CSIA). Different bacterial cultures and groundwater were shown to have contrasting isotopic selectivities for common organic compounds. The ease of such GC-MRR measurements may initiate a new era in biosynthetic/degradation and geochemical isotopic compound studies.  相似文献   
22.
Grignard reactions are of importance in organic chemistry for the synthesis β-keto esters and diethyl malonate, alcohols, aldehydes or ketones, monocarboxylic acids, and other organometallic compounds. Generally, the heterolytic dissociation of C─Mg bond in Grignard reagent is the key step in these reactions. Recently, homolytic cleavage of the C─Mg bond in Grignard reagents has been reported in the preparation of stable radicals. These reactive species react with other compounds, which result in the formation of hydrocarbons and their derivatives. Therefore, the study of homolytic cleavage of C─Mg bonds is quite vital to better understand the kinetics and thermodynamics of these reactions. In the current study, a benchmark approach is adopted to find a cost-effective and accurate density functional (DF) for bond dissociation energies measurement of the C─Mg bond of Grignard reagents. Twenty-nine DFs from 13 density functional theory (DFT) classes with three types of basis sets (Pople' 6-31G(d) and 6-311G(d), Dunning's aug-cc-pVDZ, and Karlsruhe' def2-SVP basis sets) are implemented for the measurement of dissociation energies of the C─Mg bond. Theoretical dissociation energy values are compared with experimental reported values of the C─Mg bond of selected Grignard reagents. TPSSTPSS of the meta-GGA class with 6-31G (d) basis set gave accurate results, and its Pearson's correlation is 0.95. SD, root mean square deviation, and mean unsigned error of this method are 2.36 kcal mol−1, 2.33 kcal mol−1, and −0.46 kcal mol−1, respectively. TPSSTPSS of the meta-GGA class is a one-electron, self-interaction, error-free Tao-Perdew-Staroverov-Scuseria functional that performed better with the 6-31G(d) basis set.  相似文献   
23.
Sustainable materials have slowly overtaken the nanofiber research field while the tailoring of their properties and the upscaling for industrial production are some of the major challenges. We report preparation of nanofibers that are bio-based and biodegradable prepared from poly (butylene succinate) (PBS) with the incorporation of nanofibrillated cellulose (NFC) and graphene nanoplatelets (GN). NFC and GN were combined as hybrid filler, which led to the improved morphological structure for electrospun nanofibers. A needleless approach was used for solution electrospinning fabrication of nanofiber mesh structures to promote application scalability. The polymer crystallization process was examined by differential scanning calorimetry (DSC), the thermal stability was evaluated by thermal gravimetric analysis (TGA), while the extensive investigation of the nanofibers structure was carried out with scanning electron microscopy (SEM) and atomic force microscopy (AFM). NFC and GN loadings were 0.5 and 1.0 wt %; while poly (ethylene glycol) (PEG) was employed as a compatibilizer to enhance fillers’ interaction within the polymer matrix. The interactions in the interface of the fillers and matrix components were studied by FTIR and Raman spectroscopies. The hybrid filler approach proved to be most suitable for consistent and high-quality nanofiber production. The obtained dense mesh-based structures could have foreseeable potential application in biomedical field like scaffolds for the tissue and bone recovery, while other applications could focus on filtration technologies and smart sensors.  相似文献   
24.
The world is witnessing tumultuous times as major economic powers including the US, UK, Russia, India, and most of Europe continue to be in a state of lockdown. The worst-hit sectors due to this lockdown are sales, production (manufacturing), transport (aerospace and automotive) and tourism. Lockdowns became necessary as a preventive measure to avoid the spread of the contagious and infectious “Coronavirus Disease 2019” (COVID-19). This newly identified disease is caused by a new strain of the virus being referred to as Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS CoV-2; formerly called 2019-nCoV). We review the current medical and manufacturing response to COVID-19, including advances in instrumentation, sensing, use of lasers, fumigation chambers and development of novel tools such as lab-on-the-chip using combinatorial additive and subtractive manufacturing techniques and use of molecular modelling and molecular docking in drug and vaccine discovery. We also offer perspectives on future considerations on climate change, outsourced versus indigenous manufacturing, automation, and antimicrobial resistance. Overall, this paper attempts to identify key areas where manufacturing can be employed to address societal challenges such as COVID-19.  相似文献   
25.
Das  Avirup  Thakur  A. K. 《Ionics》2017,23(10):2845-2853

Polymer nanocomposite has been proven to improve the property of polymer salt complex. Organo-modified clay and inorganic oxides are the most commonly used filler for polymer nanocomposite (PNC). However, single wall carbon nanotube (SWCNT)/multiwall carbon nanotube (MWCNT) are becoming popular filler for PNC for their high surface area and high mechanical stability. In this work, a series of PNC sample has been prepared by using polyethylene oxide (PEO)-polydimethylsiloxane (PDMS) blend as polymer matrix, an optimized salt stoichiometry of Ö/Li ~15, and surface-modified MWCNT as filler. The effect of ion-polymer and ion-MWCNT interaction in the polymer nanocomposite has been investigated by using XRD, SEM, FTIR, and electrical study. X-ray diffraction pattern confirms the dispersion of MWCNT inside the polymer chain and modifies the structural parameter of the polymer matrix. FTIR spectra indicate inclusion of MWCNT inside the polymer salt complex which changes the ion dissociation/association in the polymer host matrix. Further, the changes in structural, thermal, and electrical property of the polymer salt complex system have been studied by using SEM, DSC, and impedance analysis. Dc conductivity study shows that optimized PNC sample has conductivity of 8.04 × 10−5 S cm−1. This is almost two order enhancement from pure polymer salt system (10−6 S cm−1).

  相似文献   
26.
J Thakur 《Pramana》1987,28(1):1-8
We consider the application of semiclassical approximation to relativistic potentials for massless particles where the kinetic energy is a nontrivial, nonlocal operator. Quantization rules are derived for an arbitrary confining potential and compared to some exact results forS-waves. These results admit of a partial generalization to smalll values.  相似文献   
27.
28.
A new series of 1,2,4‐triazole was designed, synthesized, and characterized as remarkable antimicrobial and antioxidant agents. These heterocycles have been prepared from the cyclization reactions of Schiff bases 3 ( a‐k ) with phenylhydrazine by refluxing under the alkaline medium. The Schiff bases in turn were realized in good yields from the condensation reactions of N‐phenylurea with different aromatic aldehydes. The structures of the intermediates 3 ( a‐k ) and final heterocycles 4 ( a‐k ) have been fully characterized through their spectral parameters.  相似文献   
29.
Journal of Radioanalytical and Nuclear Chemistry - Polonium is rapidly emerging as an international environmental health concern primarily because of the recent rise in hydraulic fracturing...  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号