首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   440篇
  免费   23篇
  国内免费   2篇
化学   301篇
晶体学   12篇
力学   18篇
数学   30篇
物理学   104篇
  2024年   1篇
  2023年   5篇
  2022年   15篇
  2021年   28篇
  2020年   21篇
  2019年   31篇
  2018年   18篇
  2017年   11篇
  2016年   19篇
  2015年   18篇
  2014年   24篇
  2013年   38篇
  2012年   39篇
  2011年   33篇
  2010年   13篇
  2009年   14篇
  2008年   21篇
  2007年   15篇
  2006年   6篇
  2005年   9篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2001年   5篇
  2000年   5篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1992年   1篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1988年   2篇
  1987年   4篇
  1986年   1篇
  1985年   3篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1974年   4篇
  1973年   1篇
排序方式: 共有465条查询结果,搜索用时 31 毫秒
141.
142.
Three conjugated polymers comprised of dioctyl‐dithieno‐[2,3‐b:2',3'‐d]silole and a donor‐acceptor‐donor triad of either cis‐benzbisoxazole, trans‐benzobisoxazole or trans‐benzobisthiazole were synthesized via the Stille cross‐coupling reaction. The impact of varying the heteroatoms and/or the location within the benzobisazole moiety on the optical and electronic properties of the resulting polymers was evaluated via cyclic voltammetry and UV‐Visible spectroscopy. All of the polymers have similar optical band‐gaps of ~1.9 eV and highest occupied molecular orbital levels of ? 5.2 eV. However, the lowest unoccupied molecular orbitals (LUMO) ranged from ? 3.0 to ? 3.2 eV. Interestingly, when the polymers were used as donor materials in bulk‐heterojunction photovoltaic cells with PC71BM as the electron‐acceptor, the benzobisoxazole‐based polymers gave slightly better results than the benzobisthiazole‐containing polymers with power conversion efficiencies up to 3.5%. These results indicate that benzobisoxazoles are promising materials for use in OPVs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1533–1540  相似文献   
143.
A new fused core‐modified 32π heptaphyrin with Möbius aromatic character is reported. The 1H NMR data indicated a weak Möbius aromaticity at 298 K; however, at 213–183 K, the molecule predominates [4n]π Möbius conformation with strong diatropic ring current, which was further confirmed by X‐ray analysis. The protonation experiment led to preservation of the Möbius aromaticity at 298 K. Nevertheless, the experimental results were further supported by theoretical studies. Overall, this study represents the first example of Möbius aromatic fused core‐modified expanded porphyrin.  相似文献   
144.
JPC – Journal of Planar Chromatography – Modern TLC - A new quantitative method using thin-layer chromatography silica gel 60F254 plates as the stationary phase and the mobile phase...  相似文献   
145.
Site selectivity, differentiating instances of the same functional group type on one substrate, represents a forward‐looking theme within chemistry: reduced dependence on protection/deprotection protocols for increased overall yield and step‐efficiency. Despite these potential benefits and the expanded tactical advantages afforded to synthetic design, site selectivity remains elusive and especially so for ketone‐based substrates. Herein, site‐selective intermolecular mono‐aldolization has been demonstrated for an array of prochiral 4‐keto‐substituted cyclohexanones with concomitant regio‐, diastereo‐, and enantiocontrol. Importantly, the aldol products allow rapid access to molecularly complex ketolactones or keto‐1,3‐diols, respectively containing three and four stereogenic centers. The reaction conditions are of immediate practical value and general enough to be applicable to other reaction types. These findings are applied in the first enantioselective, formal, synthesis of a leading Alzheimer's research drug, a γ‐secretase modulator (GSM), in the highest known yield.  相似文献   
146.
Multi-walled carbon nanotubes (MWCNTs) are grown by arc discharge method in a controlled methane environment. The arc discharge is produced between two graphite electrodes at the ambient pressures of 100 tort, 300 torr, and 500 torr. Arc plasma parameters such as temperature and density are estimated to investigate the influences of the ambient pressure and the contributions of the ambient pressure to the growth and the structure of the nanotubes. The plasma temperature and density are observed to increase with the increase in the methane ambient pressure. The samples of MWCNT synthesized at different ambient pressures are analyzed using transmission electron microscopy, scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. An increase in the growth of MWCNT and a decrease in the inner tube diameter are observed with the increase in the methane ambient pressure.  相似文献   
147.
Metabolic engineering is an important area of research that involves editing genetic networks to overproduce a certain substance by the cells. Using a combination of genetic, metabolic, and modeling methods, useful substances have been synthesized in the past at industrial scale and in a cost-effective manner. Currently, metabolic engineering is being used to produce sufficient, economical, and eco-friendly biofuels. In the recent past, a number of efforts have been made towards engineering biosynthetic pathways for large scale and efficient production of biofuels from biomass. Given the adoption of metabolic engineering approaches by the biofuel industry, this paper reviews various approaches towards the production and enhancement of renewable biofuels such as ethanol, butanol, isopropanol, hydrogen, and biodiesel. We have also identified specific areas where more work needs to be done in the future.  相似文献   
148.
Nanotechnology is playing an important role in drug delivery to overcome limitations of conventional drug delivery systems in terms of solubility, in vivo stability, pharmacokinetics, and bio-distribution. The controlled transportation of drug into the cell and within the cell is a major challenge to be addressed. Cellular molecular motors have been exploited for their cargo carrying capacity for various applications including engineering and health care. Combination of nanotechnology and biomolecular motors can address some of the challenges in drug delivery. In the present study, transportation of drug nanocomposites has been demonstrated. Nanocomposites of 6-mercaptopurine and levodopa drugs (cancer and Parkinson’s disease, respectively) were prepared with gold nanoparticles (GNPs) by covalent attachment and these nanocomposites were attached to actin filaments. These nanocomposites were in-turn transported by actin filaments on myosin tracks. Characterization of drug nanocomposites formation was done by UV–Vis spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and confocal microscopy. GNP composites of 6-mercaptopurine and levodopa were formed by sulfide and amide bond formation, respectively. Average velocity of actin filament attached to nanocomposites was found to be 3.17 and 3.89 μm/s for levodopa and 6-mercaptopurine, respectively, as compared to actin filaments with velocity of 4.0–6.0 μm/s. Three concepts have been proposed for the study of drug transportation into the cell based on polycationic complex formation, interaction of actin with cellular myosin and Biomolecular Adaptor for Retrograde Transport (BART) technology. The aspects of this study heads toward the development of an approach to utilize molecular motors for nanoscale transportation endogenously.  相似文献   
149.
Recently, membrane-based separation processes, particularly electrodialysis, have attracted attention for the separation and purification of organic and amino acids from animal feedstock waste. In this study, cation exchange membranes were synthesized by making a composite of thermoplastic polyurethane and polyaniline (PANI) via the doping of various aromatic sulfonic acids, such as β -naphthol sulfonic acid and phenol sulfonic acid. The PANI was prepared using a standard method, which was further used in the composite blending at varying concentrations of 10%–20%. The impact of the concentration of PANI and the nature of the dopant on the membrane characteristics were comparatively studied. The membranes were analyzed by electric conductivity, water swelling, morphological studies (SEM), and thermogravimetric analysis. The membranes were used for the separation of glycine hydrochloride via electrodialysis.  相似文献   
150.
Green chemistry-assisted biocompatible copper (Cu), silver (Ag), and iron oxide (Fe2O3) nanoparticles (NPs) synthesis along with surface modification using Koelreuteria apiculata is demonstrated in this research, for the first time. Appropriate analytical techniques were utilized to confirm the preparation, spherical morphology, and crystalline structure of each of the NPs. The antioxidant nature of synthesized NPs was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging. Besides, the antimicrobial activity was also performed using bacterial strains of Staphylococcus aureus, Escherichia coli, and Salmonella typhi. Aspergillus sp. was designed as marker specie for the antifungal studies. The outcomes of NPs exposure, analyzed with reference to Chlorella sp. of the algal family exhibit the numerical values around 833% for AgNPs, 497% of CuNPs, and 456% for Fe2O3NPs. Phytotoxicity assay performed on the seeds of Vigna radiata and Cicer arietinum further validate the accordant nature of NPs towards vivacity. Allium cepa was also used as a test model to ascertain the genotoxic effects of the NPs wherein the mitotic index (MI) was calculated for AgNPs, CuNPs, and Fe2O3NPs as 42.1, 51.7, and 54.2% respectively. The outcomes of this research proved the suitability and affordability of our NPs developed using green synthesis for new industrial applications of in-situ reduction of carcinogenic compounds from water and soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号