首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   2篇
化学   1篇
力学   8篇
物理学   3篇
  2022年   1篇
  2017年   1篇
  2015年   5篇
  2014年   1篇
  2013年   2篇
  2010年   1篇
  2008年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
11.
Dynamic stability behavior of the shear-flexible composite beams subjected to the nonconservative force is intensively investigated based on the finite element model using the Hermitian beam elements. For this, a formal engineering approach of the mechanics of the laminated composite beam is presented based on kinematic assumptions consistent with the Timoshenko beam theory, and the shear stiffness of the thin-walled composite beam is explicitly derived from the energy equivalence. An extended Hamilton’s principle is employed to evaluate the mass-, elastic stiffness-, geometric stiffness-, damping-, and load correction stiffness matrices. Evaluation procedures for the critical values of divergence and flutter loads of the nonconservative system with and without damping effects are then briefly introduced. In order to verify the validity and the accuracy of this study, the divergence and flutter loads are presented and compared with the results from other references, and the influence of various parameters on the divergence and flutter behavior of the laminated composite beams is newly addressed: (1) variation of the divergence and flutter loads with or without the effects of shear deformation and rotary inertia with respect to the nonconservativeness parameter and the fiber angle change, (2) influence of the internal and external damping on flutter loads whether to consider the shear deformation or not.  相似文献   
12.
The refined power series solutions are presented for the coupled static analysis of thin-walled laminated beams resting on elastic foundation. For this purpose, the elastic strain energy considering the material and structural coupling effects and the energy including the foundation effects are constructed. The equilibrium equations and the force-displacement relationships are derived from the extended Hamilton's principle, and the explicit expressions for displacement parameters are presented based on power series expansions of displacement components. Finally, the member stiffness matrix is determined by using the force-displacement relationships. For comparison, the finite element model based on the Hermite cubic interpolation polynomial is presented. In order to verify the accuracy and the superiority of the laminated beam element developed by this study, the numerical solutions are presented and compared with results obtained from the regular finite beam elements and the ABAQUS's shell elements. The influences of the fiber angle change and the boundary conditions on the coupled behavior of laminated beams with mono-symmetric I-sections are investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号