首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1679篇
  免费   72篇
  国内免费   15篇
化学   1051篇
晶体学   29篇
力学   63篇
数学   255篇
物理学   368篇
  2023年   10篇
  2022年   38篇
  2021年   46篇
  2020年   48篇
  2019年   57篇
  2018年   60篇
  2017年   58篇
  2016年   76篇
  2015年   58篇
  2014年   76篇
  2013年   174篇
  2012年   115篇
  2011年   141篇
  2010年   92篇
  2009年   95篇
  2008年   107篇
  2007年   105篇
  2006年   67篇
  2005年   57篇
  2004年   51篇
  2003年   44篇
  2002年   35篇
  2001年   10篇
  2000年   11篇
  1999年   6篇
  1998年   8篇
  1997年   7篇
  1996年   12篇
  1995年   3篇
  1994年   4篇
  1993年   10篇
  1992年   12篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   6篇
  1986年   4篇
  1985年   5篇
  1984年   11篇
  1983年   3篇
  1982年   3篇
  1981年   4篇
  1980年   5篇
  1979年   4篇
  1977年   2篇
  1975年   4篇
  1974年   4篇
  1970年   1篇
  1967年   1篇
  1936年   2篇
排序方式: 共有1766条查询结果,搜索用时 359 毫秒
201.
Clusters of tetracene molecules with different numbers of attached (Ar)(N), (Ne)(N) and (H(2))(N) particles (N = 1-2000) are assembled inside superfluid He nanodroplets and studied via laser-induced fluorescence. The frequency shift of the fluorescence spectrum of the tetracene molecules is studied as a function of cluster size and pickup order of tetracene and cluster species. For (Ar)(N) and (Ne)(N) clusters, our results indicate that the tetracene molecules reside inside the clusters when tetracene is captured by the He nanodroplet before the cluster species; conversely, the tetracene molecules stay on the surface of the clusters when tetracene is captured after the cluster species. In the case of (H(2))(N) clusters, however, tetracene molecules reside inside the (H(2))(N) clusters irrespective of the pickup order. We conclude that (Ar)(N) and (Ne)(N) clusters are rigid at T = 0.38 K, while (H(2))(N) clusters of up to N = 2000 remain fluxional at the same temperature. The results may also indicate the occurrence of heterogeneous nucleation of the (H(2))(N) clusters, which is induced by the interaction with tetracene chromophore molecules.  相似文献   
202.
High-selectivity, uniform three-dimensional (3D) flower-like bismuth telluride (Bi(2)Te(3)) nanocrystals consisting of few-quintuple-layer nanoplatelets with a thickness down to 4.5 nm were synthesized for the first time by a facile, one-pot polyol method with acetic acid as the structure-director. Micrometre-sized 2D films and honeycomb-like spheres can be obtained using the uniform 3D Bi(2)Te(3) nanocrystals as building blocks.  相似文献   
203.
New Hofmann type benzene clathrates in the form of M(CyHEA)2Ni(CN)4·2benzene (where CyHEA=2-(1-cyclohexenyl)ethylamine and M=Ni or Cd) have been prepared in powder form and FT-IR and Raman spectra have been reported. The results suggest that title compounds are similar in structure to Hofmann type clathrates and their structures consist of polymeric layers of |M-Ni(CN)4|∞ with the CyHEA molecule bounded to the metal atoms (M).  相似文献   
204.
New Hofmann-T(d) type clathrates in the form of Ni(4-Phpy)(2)M(CN)(4)·2G (where 4-Phpy=4-phenylpyridine, M=Cd or Hg and G=1,4-dioxane) have been prepared in powder form and their FT-IR and Raman spectra have been reported. The results suggest that these compounds are similar in structure to the Hofmann-T(d) type clathrates.  相似文献   
205.
A new series of 1,3-thiazole and benzo[d]thiazole derivatives 10-15 has been developed, characterized, and evaluated for in vitro antimicrobial activity at concentrations of 25-200 μg/mL against Gram+ve organisms such as methicillin-resistant Staphylococcus aureus (MRSA), Gram-ve organisms such as Escherichia coli (E. coli), and the fungal strain Aspergillus niger (A. niger) by the cup plate method. Ofloxacin and ketoconazole (10 μg/mL) were used as reference standards for antibacterial and antifungal activity, respectively. Compounds 11 and 12 showed notable antibacterial and antifungal activities at higher concentrations (125-200 μg/mL), whereas benzo[d]thiazole derivatives 13 and 14 were found to display significant antibacterial or antifungal activity (50-75 μg/mL) against the Gram+ve, Gram-ve bacteria, or fungal cells used in the present study. In addition, a correlation between calculated and determined partition coefficient (log P) was established which allows future development of compounds within this series to be carried out based on calculated log P values. Moreover, compounds 13 and 14 show that the optimum logarithm of partition coefficient (log P) should be around 4.  相似文献   
206.
We present a strategy for enhancing the intrinsic emission of the enzyme cofactors flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN) and nicotinamide adenine dinucleotide (NADH). Ensemble studies show that silver island films (SIFs) are the optimal metal enhanced fluorescence (MEF) substrates for flavins and gave emission enhancements of over 10-fold for both FAD and FMN. A reduction in the lifetime of FAD and FMN on SIFs was also observed. Thermally evaporated aluminum films on quartz slides were found to be the optimal MEF substrate for NADH and gave a 5-fold increase in the emission intensity of NADH. We present finite-difference time-domain (FDTD) calculations that compute the enhancement in the radiated power emitting from an excited state dipole emitting in the wavelength range of NADH in close proximity to an aluminum nanoparticle, and a dipole emitting in the emission wavelength of flavins next to a silver nanoparticle. These calculations confirm that aluminum serves as the optimal MEF substrate for NADH and silver was the optimal MEF substrate for flavins. This is because the plasmon resonance properties of aluminum lie in the UV-blue regime and that of silver lie in the visible region. We also present the results of single molecule studies on FMN which show SIFs can both significantly enhance the intrinsic emission from single FMN molecules, significantly reduce their lifetimes and also significantly reduce FMN blinking. This is the first report of the observation of MEF from cofactors both at the ensemble and single molecule level. We hope this study will serve as a platform to encourage the future use of metallic nanostructures to study cofactors using their intrinsic fluorescence to directly monitor enzyme binding reactions without the need of extrinsic labeling of the molecules.  相似文献   
207.
The aerial parts and roots of Betonica officinalis were collected from three localities characterized by different ecological conditions to study the natural variability of the chemical composition of the essential oils in this plant. The leaves and inflorescences were collected during the flowering time, whereas the roots were collected at the end of the vegetative period. The plant material was dried at room temperature. The essential oils were obtained by micro-steam hydrodistillation and analyzed using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Overall, 69 constituents were identified in all localities and plant parts. The main compositions of the leaves in all localities were alpha-pinene, 1-octen-3-ol, beta-bourbonene, (E)-caryophyllene and germacrene D. The essential oil of the inflorescences was characterized by these main constituents: alpha-pinene, (E)-caryophyllene and trans-beta-farnesene. In all localities, the percentages of alpha-pinene and (E)-caryophyllene were higher in the inflorescences than in the leaves, whereas nonane was the main constituent in the roots.  相似文献   
208.
This article studies the three-dimensional boundary layer flow of an elasticoviscous fluid over a stretching surface. Velocity of the stretching sheet is assumed to be time-dependent. Effect of mass transfer with higher order chemical reaction is further considered. Computations are made by the homptopy analysis method (HAM). Convergence of the obtained series solutions is explicitly analyzed. Variations of embedding parameters on the velocity and concentration are graphically discussed. Numerical computations of surface mass transfer are reported. Comparison of the present results with the numerical solutions is also given.  相似文献   
209.
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号