首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1143篇
  免费   31篇
  国内免费   4篇
化学   868篇
晶体学   8篇
力学   27篇
数学   153篇
物理学   122篇
  2023年   12篇
  2022年   53篇
  2021年   51篇
  2020年   19篇
  2019年   25篇
  2018年   15篇
  2017年   12篇
  2016年   42篇
  2015年   23篇
  2014年   43篇
  2013年   78篇
  2012年   61篇
  2011年   103篇
  2010年   47篇
  2009年   38篇
  2008年   77篇
  2007年   74篇
  2006年   61篇
  2005年   69篇
  2004年   65篇
  2003年   33篇
  2002年   34篇
  2001年   6篇
  2000年   13篇
  1999年   10篇
  1998年   7篇
  1997年   9篇
  1996年   15篇
  1995年   12篇
  1994年   5篇
  1993年   8篇
  1992年   7篇
  1991年   5篇
  1990年   3篇
  1989年   7篇
  1988年   4篇
  1987年   8篇
  1986年   3篇
  1984年   1篇
  1982年   1篇
  1981年   4篇
  1980年   1篇
  1979年   2篇
  1977年   3篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1944年   1篇
  1940年   1篇
排序方式: 共有1178条查询结果,搜索用时 15 毫秒
51.
We developed a rapid and non-toxic method for the preparation of colloidal gold nanoparticles (GNPs) by using tryptophan (Trp) as reducing/stabilizing agent. We show that the temperature has a major influence on the kinetics of gold ion reduction and the crystal growth, higher temperatures favoring the synthesis of anisotropic nanoparticles (triangles and hexagons). The as-synthesized nanostructures were characterized by UV–Vis absorption spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), fluorescence, and surface-enhanced Raman scattering (SERS) spectroscopy. The UV–Vis measurements confirmed that temperature is a critical factor in the synthesis process, having a major effect on the shape of the synthesized GNPs. Moreover, fluorescence spectroscopy was able to monitor the quenching of the Trp fluorescence during the in situ synthesis of GNPs. Using Trp as molecular analyte to evaluate the SERS efficiency of as-prepared GNPs at different temperatures, we demonstrated that the Raman enhancement of the synthesized gold nanoplates is higher than that of the gold spherical nanoparticles.  相似文献   
52.
Peptides are a rapidly growing class of therapeutics with various advantages over traditional small molecules, especially for targeting difficult protein–protein interactions. However, current structure-based methods are largely limited to natural peptides and are not suitable for designing bioactive cyclic topologies that go beyond natural l-amino acids. Here, we report a generalizable framework that exploits the computational power of Rosetta, in terms of large-scale backbone sampling, side-chain composition and energy scoring, to design heterochiral cyclic peptides that bind to a protein surface of interest. To showcase the applicability of our approach, we developed two new inhibitors (PD-i3 and PD-i6) of programmed cell death 1 (PD-1), a key immune checkpoint in oncology. A comprehensive biophysical evaluation was performed to assess their binding to PD-1 as well as their blocking effect on the endogenous PD-1/PD-L1 interaction. Finally, NMR elucidation of their in-solution structures confirmed our de novo design approach.

In silico design of heterochiral cyclic peptides that bind to a specific surface patch on the target protein (PD-1, in this case) and disrupt protein–protein interactions.  相似文献   
53.
The phosphorus-bridged cavitand 1 self-assembles very efficiently in CH2Cl2 with either the monopyridinium guest 2+ or the bispyridinium guest 3(2+). In the first case a 1:1 complex is obtained, whereas in the second case both 1:1 and 2:1 host-guest complexes are observed. The association between 1 and either one of the guests causes the quenching of the cavitand fluorescence; in the case of the adduct between 1 and 3(2+), the fluorescence of the latter is also quenched. Cavitand complexation is found to affect the reduction potential values of the electroactive guests. Voltammetric and spectroelectrochemical measurements show that upon one-electron reduction both guests are released from the cavity of 1. Owing to the chemical reversibility of such redox processes, the supramolecular complexes can be re-assembled upon removal of the extra electron from the guest. Systems of this kind are promising for the construction of switchable nanoscale devices and self-assembling supramolecular materials, the structure and properties of which can be reversibly controlled by electrochemical stimuli.  相似文献   
54.
Venlafaxine (VFX) is a serotonin and norepinephrine reuptake inhibitor chiral drug used in therapy as an antidepressant in the form of a racemate consisting of R‐ and S‐VFX. The two enantiomers of VFX exhibit different pharmacological activities: R‐VFX inhibits both norepinephrine and serotonin synaptic reuptake, whereas S‐VFX inhibits only the serotonin one. R‐ and S‐VFX are metabolized in the liver to the respective R‐ and SO‐desmethylvenlafaxine (ODVFX), R‐ and SN‐desmethylvenlafaxine (NDVFX), and R‐ and SN,O‐didesmethylvenlafaxine (NODVFX). The pharmacological profile of ODVFX is close to that of VFX, whereas the other two chiral metabolites (NDVFX and NODVFX) have lower affinity for the receptor sites. The pharmacokinetics of the VFX enantiomers appear stereoselective, including the metabolism process. In the past 20 years, several studies describing the enantioselective analysis of R‐ and S‐VFX in pharmaceutical formulations and its chiral metabolites in biological matrices were published. These methods encompass liquid chromatography coupled with UV detection, mass spectrometry, or tandem mass spectrometry, and capillary electrophoresis. This paper reviews the published methods used for the determination of the individual enantiomers of VFX and its chiral metabolites in different matrices.  相似文献   
55.
Langevin dynamics simulations are performed on linear-dendritic diblock copolymers containing bead-spring, freely jointed chains composed of hydrophobic linear monomers and hydrophilic dendritic monomers. The critical micelle concentration (CMC), micelle size distribution, and shape are examined as a function of dendron generation and architecture. For diblock copolymers with a linear block of fixed length, it is found that the CMC increases with increasing dendron generation. This trend qualitatively agrees with experiments on linear-dendritic diblock and triblock copolymers with hydrophilic dendritic blocks and hydrophobic linear blocks. The flexibility of the dendritic block is altered by varying the number of spacer monomers between branch points in the dendron. When comparing linear-dendritic diblock copolymers with similar molecular weights, it is shown that increasing the number of spacer monomers in the dendron lowers the CMC due to an increase in flexibility of the dendritic block. Analysis on the micellar structure shows that linear-dendritic diblock copolymers pack more densely than what would be expected for a linear-linear diblock copolymer of the same molecular weight.  相似文献   
56.
The aim of this work was to study the effect of the concentrate solution pH and the composition in calcium, carbonate and protein of the diluate solution to be treated by conventional electrodialysis on the fouling of ion-exchange membranes. Conductivity, system resistance, pH of the diluate and cation migration were monitored to follow the evolution of the demineralization. Total cation migration was similar for all conditions although different forms of fouling were identified after three consecutive 100 min electrodialysis treatments. The nature of fouling and the membrane surface fouled depended on the concentrate pH value, the diluate mineral composition and the intrinsic composition of the whey isolate. Once conditions leading to membrane fouling were identified, an alternative configuration for our electrodialysis stack is proposed to prevent fouling onset.  相似文献   
57.
The electrophoretic mobilities of single-walled carbon nanotubes (SWNTs) in agarose gels subjected to negatively charged covalent functionalization and noncovalent anionic surfactant adsorption are compared using a simplified hydrodynamic model. Net charges are calculated on the basis of estimated friction coefficients for cylindrical rodlike particles. The effects of functionalization with negatively charged 4-hydroxybenzene diazonium and anionic sodium cholate are quantified and compared with model predictions. The adsorption of Na+ counterions into the nonionic surfactant layer adsorbed on SWNTs (Triton-X-405) is shown to induce a positive charge and reverse the mobility under select conditions. This effect has not been identified or quantified for nanoparticle systems and may be important in the processing of these systems.  相似文献   
58.
We have performed a comparative study of the electronic properties of six different electron-doped metal-phthalocyanine (MPc) compounds (ZnPc, CuPc, NiPc, CoPc, FePc, and MnPc), in which the electron density is controlled by means of potassium intercalation. Despite the complexity of these systems, we find that the nature of the underlying molecular orbitals produces observable effects in the doping dependence of the electrical conductivity of the materials. For all the MPc's in which the added electrons are expected to occupy orbitals centered on the ligands (ZnPc, CuPc, and NiPc), the doping dependence of the conductivity has an essentially identical shape. This shape is different from that observed in MPc materials in which electrons are also added to orbitals centered on the metal atom (CoPc, FePc, and MnPc). The observed relation between the macroscopic electronic properties of the MPc compounds and the properties of the molecular orbitals of the constituent molecules clearly indicates the richness of the alkali-doped metal-phthalocyanines as a model class of compounds for the investigation of the electronic properties of molecular systems.  相似文献   
59.
Extensive molecular-dynamics simulations have been performed to study the effect of chain conformational rigidity, controlled by bending and torsion potentials, on self-diffusion in polymer melts. The polymer model employs a novel torsion potential that avoids computational singularities without the need to impose rigid constraints on the bending angles. Two power laws are traditionally used to characterize the dependence of the self-diffusion coefficient on polymer length: D proportional to N(-nu) with nu=1 for NNe (reptation regime), Ne being the entanglement length. Our simulations, at constant temperature and density, up to N=250 reveal that, as the chain rigidity increases, the exponent nu gradually increases towards nu=2.0 for NNe. The value of Ne is slightly increased from 70 for flexible chains, up to the point where the crossover becomes undefined. This behavior is confirmed also by an analysis of the bead mean-square displacement. Subsequent investigations of the Rouse modes, dynamical structure factor, and chain trajectories indicate that the pre-reptation regime, for short stiff chains, is a modified Rouse regime rather than reptation.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号