首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   818篇
  免费   73篇
  国内免费   4篇
化学   665篇
晶体学   5篇
力学   22篇
数学   48篇
物理学   155篇
  2024年   2篇
  2023年   30篇
  2022年   22篇
  2021年   31篇
  2020年   46篇
  2019年   40篇
  2018年   34篇
  2017年   22篇
  2016年   61篇
  2015年   40篇
  2014年   48篇
  2013年   66篇
  2012年   77篇
  2011年   74篇
  2010年   42篇
  2009年   26篇
  2008年   36篇
  2007年   36篇
  2006年   29篇
  2005年   14篇
  2004年   15篇
  2003年   19篇
  2002年   11篇
  2001年   13篇
  2000年   6篇
  1999年   7篇
  1998年   4篇
  1996年   1篇
  1995年   5篇
  1994年   3篇
  1993年   3篇
  1992年   4篇
  1991年   3篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   4篇
  1984年   2篇
  1983年   1篇
  1982年   4篇
  1978年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有895条查询结果,搜索用时 31 毫秒
101.
The self‐assembled structures of atomically precise, ligand‐protected noble metal nanoclusters leading to encapsulation of plasmonic gold nanorods (GNRs) is presented. Unlike highly sophisticated DNA nanotechnology, this strategically simple hydrogen bonding‐directed self‐assembly of nanoclusters leads to octahedral nanocrystals encapsulating GNRs. Specifically, the p‐mercaptobenzoic acid (pMBA)‐protected atomically precise silver nanocluster, Na4[Ag44(pMBA)30], and pMBA‐functionalized GNRs were used. High‐resolution transmission and scanning transmission electron tomographic reconstructions suggest that the geometry of the GNR surface is responsible for directing the assembly of silver nanoclusters via H‐bonding, leading to octahedral symmetry. The use of water‐dispersible gold nanoclusters, Au≈250(pMBA)n and Au102(pMBA)44, also formed layered shells encapsulating GNRs. Such cluster assemblies on colloidal particles are a new category of precision hybrids with diverse possibilities.  相似文献   
102.
Journal of Solid State Electrochemistry - In dye-sensitized solar cell (DSSC) application, the particulate morphologies of photo-anode facilitate efficient dye loading and thus lead to better...  相似文献   
103.
The reaction between Co(NO3)2.6H2O and substituted pyridylcarboxylic acid [nicotinic acid (Hnic) or trans-3-pyridylacrylic acid (Htpa)] in the presence of NaN3 under hydrothermal conditions yielded [Co(1.5)(nic)2 (Hnic)(N3)]n (1) and [Co(1.5)(tpa)2 (N3)(H2O)]n (2), respectively. Single crystal structure analyses reveal that both complexes are 3D complicated coordination polymers. The basic repeating units in both of the complexes are Co(3) trinuclear clusters containing syn-syn bridging carboxylate and end-on azido linker. A similar reaction using MnCl2.4H2O in presence of equimolar amounts of Htpa and NaN3 yielded a 2D corrugated sheet [Mn(tpa)2]n (3) containing no azide. Complex 3 can also be synthesized under hydrothermal conditions using Natpa in the absence of NaN3. Surprisingly, the same reaction at room temperature yielded a known mononuclear complex [Mn(tpa)2(H2O)4]. Variable temperature magnetic studies down to 2 K revealed the dominant antiferromagnetic nature of the first two complexes with a ferrimagnetic type of behavior despite the facts that they are homometallic and homospin systems. The susceptibility data in both cases were analyzed by a Co3 trinuclear model as well as considering inter-trimer interactions. Complex 3 is weakly antiferromagnetic in nature with an exchange parameter of J = -2 cm(-1) through the syn-anti bridging carboxylate pathway.  相似文献   
104.
The chemical nature of the DNA bases is an important factor in sequence-mediated association of DNA molecules. Nucleotides are the fundamental DNA elements and the base identity impacts the molecular properties of nucleotide fragments. It is interesting to study the fundamental nature of nucleotides in DNA, on the basis of base-specific interactions, association, and modes of standard atomic or molecular interactions. With all-atom molecular dynamics simulations of model dinucleotide and tetranucleotide systems having single-stranded dinucleotide or tetranucleotide fragments of varying sequences, we show how the base identity and interactions between the different bases as well as water may affect the clustering properties of nucleotides fragments in an ionic solution. Sequence-dependent differential interactions between the nucleotide fragments, ionic concentration, and elevated temperature are found to influence the clustering properties and dynamics of association. Well-known epigenetic modification of DNA, that is, cytosine methylation also promotes dinucleotide clustering in solution. These observations point to one possible chemical nature of the DNA bases, as well as the importance of the base pairing, base stacking, and ionic interactions in DNA structure formation, and DNA sequence-mediated association. Sequence- and the ionic environment-mediated self-association properties of the dinucleotides indicate its great potential to develop biological nanomaterials for desired applications.  相似文献   
105.
The factors/structural features which are responsible for the binding, activation and reduction of N2 to NH3 by FeMoco of nitrogenase have not been completely understood well. Several relevant model complexes by Holland et al. and Peters et al. have been synthesized, characterized and studied by theoretical calculations. For a matter of fact, those complexes are much different than real active N2-binding Fe-sites of FeMoco, which possesses a central C(4-) ion having an eight valence electrons as an μ6-bridge. Here, a series of [(S3C(0))Fe(II/I/0)-N2]n- complexes in different charged/spin states containing a coordinated σ- and π-donor C(0)-atom which possesses eight outer shell electrons [carbone, (Ph3P)2C(0); Ph3P→C(0)←PPh3] and three S-donor sites (i.e. -S-Ar), have been studied by DFT, QTAIM, and EDA-NOCV calculations. The effect of the weak field ligand on Fe-centres and the subsequent N2-binding has been studied by EDA-NOCV analysis. The role of the oxidation state of Fe and N2-binding in different charged and spin states of the complex have been investigated by EDA-NOCV analyses. The intrinsic interaction energies of the Fe−N2 bond are in the range from −42/−35 to −67 kcal/mol in their corresponding ground states. The S3C(0) donor set is argued here to be closer to the actual coordination environment of one of the six Fe-centres of nitrogenase. In comparison, the captivating model complexes reported by Holland et al. and Peter et al. possess a stronger π-acceptor C-ring (S2Cring donor, π-C donor) and stronger donor set like CP3 (σ-C donor) ligands, respectively.  相似文献   
106.
107.
Recent broad-ranging mechanistic studies of FeIII-TAML peroxide activators enable a strategy for designing catalysts with improved (i) hydrolytic and (ii) operational stabilities, (iii) faster activation of H2O2 and other peroxides, and (iv) a pH of highest activity closer to 7. Combining all items of insight leads to [Fe{1-NO2C6H3-3,4-(NCOCMe2NCO)2CF2}(OH2)]- (1a) which exhibits the most desirable technical performance in its class.  相似文献   
108.
Three new coordination polymers [Cu5(N3)10(en)2]n (1), [Cu6(N3)12(en)4]n (2), and [Cu4(N3)8(en)4]n (3) have been synthesized in a controlled manner by treatment of a 1:2 mixture of Cu(NO3)2 and NaN3 with varying amount of ethylenediamine (en). Single-crystal structure analyses clearly indicated that the puckered Cu4 biscubane unit in 1 gradually opens to a slightly more open Cu4 macrocyclic unit in 2 when more en approaches to the Cu4 core. Upon addition of further en, an open Cu4 linear secondary building unit was obtained in complex 3. Complex 1 contains four different kinds of bridging modes of the azide anion and is a complicated 3D polymer. Similarly, complexes 2 and 3 are 3D and 2D polymers, respectively, containing three different kinds of bridging azides. Complex 3 contains two very rare cis end-to-end (EE) and single-end-on (EO) azido modes. Structural transformation from 1 to 3 was monitored and explained qualitatively. Variable-temperature magnetic studies in the temperature range of 300-2 K reveal the existence of dominant ferromagnetic behavior in all the three cases with a metamagnetic-type behavior in complex 1 with the critical field of transition at 0.8 T. The purity of all the complexes were established by elemental analyses, as well as by the powder XRD patterns that matched well with the expected patterns from the single-crystal structure analysis.  相似文献   
109.
A visible light mediated protocol for the synthesis of polyhalogenated and deuterated δ- and γ-lactams from readily available alkyl halides is reported. The reaction involves the generation of haloalkyl radicals through halogen atom transfer (XAT) and subsequent arylalkylation of olefins to afford dihydroisoquinolinones and oxindoles. This new XAT protocol exhibits wide scope under mild conditions and enables access to new halogenated chemical space.  相似文献   
110.
Herein we report a cobalt-catalyzed sustainable approach for C−N cross-coupling reaction between amines and alcohols. Using a well-defined Co-catalyst 1 a bearing 2-(phenyldiazenyl)-1,10-phenanthroline ligand, various N-alkylated amines were synthesized in good yields. 1 a efficiently alkylates diamines producing N, N′-dialkylated amines in good yields and showed excellent chemoselectivity when oleyl alcohol and β-citronellol, containing internal carbon-carbon double bond were used as alkylating agents. 1 a is equally compatible with synthesizing N-heterocycles via dehydrogenative coupling of amines and alcohols. 1H-Indole was synthesized via an intramolecular dehydrogenative N-alkylation reaction, and various substituted quinolines were synthesized by coupling of 2-aminobenzyl alcohol and secondary alcohols. A few control reactions and spectroscopic experiments were conducted to illuminate the plausible reaction mechanism, indicating that the 1 a -catalyzed N-alkylation proceeds through the borrowing hydrogen pathway. The coordinated arylazo ligand participates actively throughout the reaction; the hydrogen eliminated during dehydrogenation of alcohols was set aside in the ligand backbone and subsequently gets transferred in the reductive amination step to imine intermediates yielding N-alkylated amines. On the other hand, 1 a -catalyzed quinoline synthesis proceeds through dehydrogenation followed by successive C−C and C−N coupling steps forming H2O2 as a by-product under air.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号