首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35909篇
  免费   944篇
  国内免费   266篇
化学   24938篇
晶体学   321篇
力学   700篇
综合类   1篇
数学   6099篇
物理学   5060篇
  2023年   219篇
  2022年   360篇
  2021年   552篇
  2020年   767篇
  2019年   801篇
  2018年   451篇
  2017年   406篇
  2016年   1017篇
  2015年   831篇
  2014年   1005篇
  2013年   1706篇
  2012年   2180篇
  2011年   2462篇
  2010年   1329篇
  2009年   1181篇
  2008年   2275篇
  2007年   2094篇
  2006年   2117篇
  2005年   1968篇
  2004年   1687篇
  2003年   1380篇
  2002年   1335篇
  2001年   486篇
  2000年   470篇
  1999年   408篇
  1998年   397篇
  1997年   418篇
  1996年   449篇
  1995年   314篇
  1994年   368篇
  1993年   335篇
  1992年   303篇
  1991年   278篇
  1990年   244篇
  1989年   210篇
  1988年   210篇
  1987年   221篇
  1986年   180篇
  1985年   376篇
  1984年   332篇
  1983年   281篇
  1982年   342篇
  1981年   277篇
  1980年   288篇
  1979年   240篇
  1978年   227篇
  1977年   217篇
  1976年   208篇
  1975年   186篇
  1974年   162篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
The electronic structure of spiro[4.4]nonatetraene 1 as well as that of its radical anion and cation were studied by different spectroscopies. The electron‐energy‐loss spectrum in the gas phase revealed the lowest triplet state at 2.98 eV and a group of three overlapping triplet states in the 4.5 – 5.0 eV range, as well as a number of valence and Rydberg singlet excited states. Electron‐impact excitation functions of pure vibrational and triplet states identified various states of the negative ion, in particular the ground state with an attachment energy of 0.8 eV, an excited state corresponding to a temporary electron attachment to the 2b1 MO at an attachment energy of 2.7 eV, and a core excited state at 4.0 eV. Electronic‐absorption spectroscopy in cryogenic matrices revealed several states of the positive ion, in particular a richly structured first band at 1.27 eV, and the first electronic transition of the radical anion. Vibrations of the ground state of the cation were probed by IR spectroscopy in a cryogenic matrix. The results are discussed on the basis of density‐functional and CASSCF/CASPT2 quantum‐chemical calculations. In their various forms, the calculations successfully rationalized the triplet and the singlet (valence and Rydberg) excitation energies of the neutral molecule, the excitation energies of the radical cation, its IR spectrum, the vibrations excited in the first electronic absorption band, and the energies of the ground and the first excited states of the anion. The difference of the anion excitation energies in the gas and condensed phases was rationalized by a calculation of the Jahn‐Teller distortion of the anion ground state. Contrary to expectations based on a single‐configuration model for the electronic states of 1 , it is found that the gap between the first two excited states is different in the singlet and the triplet manifold. This finding can be traced to the different importance of configuration interaction in the two multiplicity manifolds.  相似文献   
993.
Novel biphenol‐based wholly aromatic poly (arylene ether sulfones) containing pendant sulfonate groups were prepared by direct aromatic nucleophilic substitution polycondensation of disodium 3,3′‐disulfonate‐4,4′‐dichlorodiphenyl sulfone (SDCDPS), 4,4′‐dichlorodiphenylsulfone (DCDPS) and biphenol. Copolymerization proceeded quantitatively to high molecular weight in N‐methyl‐2‐pyrrolidinone at 190°C in the presence of anhydrous potassium carbonate. Tough membranes were successfully cast from the control and the copolymers, which had a SDCDPS/DCDPS mole ratio of either 40:60 or 60:40 using N,N‐dimethylactamide; the 100% SDCDPS homopolymer was water soluble. Short‐term aging (30 min) indicates that the desired acid form membranes are stable to 220°C in air and conductivity values at 25°C of 0.110 (40%) and 0.170 S/cm (60%) were measured, which are comparable to or higher than the state‐of‐the art fluorinated copolymer Nafion 1135 control. The new copolymers, which contain ion conductivity sites on deactivated rings, are candidates as new polymeric electrolyte materials for proton exchange membrane (PEM) fuel cells. Further research comparing their membrane behavior to post‐sulfonated systems is in progress.  相似文献   
994.
Vertebrate tissue culture cells were exposed to 200 um wavelength radiation (1CO W/cm2) from a free electron laser (FEL) of the electrostatic generator type. Cell cultures demonstrated no morphological alterations but a statistically significant (P .05) proportion of the cells exhibited inhibition of DNA synthesis. This study demonstrates the first biological effects of the FEL and the feasibility of performing biological investigations with this device.  相似文献   
995.
A series of 3-substituted-5-methoxy-1,3,4-oxadiazol-2-ones were prepared from aldehydes, ketones, phenylacetic acids, and 1,2- and 1,3-diketones. Conditions for the formation of these oxadiazolones from the precursor N-carbamoyl chlorides depended on the structure, and varied from spontaneous ring closure to those requiring bases. Variation in the N-3 substituents sometimes produced mixtures of isomers which were separated and identified. These molecules were prepared in order to study the effect of the N-3 substituent variation on the biological properties of oxadiazolones.  相似文献   
996.
Molecules in which there are neighboring electrophilic and nucleophilic centers are unusually reactive. Oligomerization can be prevented only by bulky groups attached to the main group metal atom that would act as electron pair acceptor, or to the basic non-metal atom. The basic and the acid centers behave as a single unit in chemical reactions; the system is similar to a “double bond” whose π-electron density is largely concentrated at one atom. The unsaturated nature of these molecules can be seen in (for example) their addition reactions with hydrogen compounds of non-metals, or in reactions that are distantly related to cycloadditions at homopolar double bonds. The selection of suitable reaction partners leads to polycyclic, cage-like molecules containing metal atoms. If these atoms possess lone pairs (as is usual in the lower oxidation states of the third and fourth main groups), these can be utilized to form bonds to further (Lewis acid) metal centers. In some cases large assemblies can be built up from polycyclic systems in this way; a characteristic of these assemblies is a one-dimensional array of metal atoms. Commonly occurring structural features of the polycyclic species are tetrahedra, trigonal bipyramids and cubes.  相似文献   
997.
998.
999.
With advances in computer architecture and software, Newton methods are becoming not only feasible for large-scale nonlinear optimization problems, but also reliable, fast and efficient. Truncated Newton methods, in particular, are emerging as a versatile subclass. In this article we present a truncated Newton algorithm specifically developed for potential energy minimization. The method is globally convergent with local quadratic convergence. Its key ingredients are: (1) approximation of the Newton direction far away from local minima, (2) solution of the Newton equation iteratively by the linear Conjugate Gradient method, and (3) preconditioning of the Newton equation by the analytic second-derivative components of the “local” chemical interactions: bond length, bond angle and torsional potentials. Relaxation of the required accuracy of the Newton search direction diverts the minimization search away from regions where the function is nonconvex and towards physically interesting regions. The preconditioning strategy significantly accelerates the iterative solution for the Newton search direction, and therefore reduces the computation time for each iteration. With algorithmic variations, the truncated Newton method can be formulated so that storage and computational requirements are comparable to those of the nonlinear Conjugate Gradient method. As the convergence rate of nonlinear Conjugate Gradient methods is linear and performance less predictable, the application of the truncated Newton code to potential energy functions is promising.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号