首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120861篇
  免费   8083篇
  国内免费   5550篇
化学   54005篇
晶体学   1385篇
力学   9363篇
综合类   371篇
数学   36684篇
物理学   32686篇
  2024年   171篇
  2023年   973篇
  2022年   1621篇
  2021年   1691篇
  2020年   1885篇
  2019年   1785篇
  2018年   11593篇
  2017年   11355篇
  2016年   8016篇
  2015年   2965篇
  2014年   2848篇
  2013年   3575篇
  2012年   7563篇
  2011年   14279篇
  2010年   8283篇
  2009年   8572篇
  2008年   9303篇
  2007年   11123篇
  2006年   2633篇
  2005年   3198篇
  2004年   3034篇
  2003年   3226篇
  2002年   2179篇
  2001年   1214篇
  2000年   1253篇
  1999年   1101篇
  1998年   1019篇
  1997年   908篇
  1996年   970篇
  1995年   801篇
  1994年   673篇
  1993年   566篇
  1992年   511篇
  1991年   434篇
  1990年   392篇
  1989年   321篇
  1988年   283篇
  1987年   247篇
  1986年   222篇
  1985年   210篇
  1984年   147篇
  1983年   110篇
  1982年   107篇
  1981年   80篇
  1980年   66篇
  1979年   54篇
  1914年   45篇
  1912年   40篇
  1909年   41篇
  1908年   40篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
Bipyridinophane–fluorene conjugated copolymers have been synthesized via Suzuki and Heck coupling reactions from 5,8‐dibromo‐2,11‐dithia[3]paracyclo[3](4,4′)‐2,2′‐bipyridinophane and suitable fluorene precursors. Poly[2,7‐(9,9‐dihexylfluorene)‐coalt‐5,8‐(2,11‐dithia[3]paracyclo[3](4,4′)‐2,2′‐bipyridinophane)] ( P7 ) exhibits large absorption and emission redshifts of 20 and 34 nm, respectively, with respect to its planar reference polymer Poly[2,7‐(9,9‐dihexylfluorene)‐co‐alt‐1,4‐(2,5‐dimethylbenzene)] ( P11 ), which bears the same polymer backbone as P7 . These spectral shifts originate from intramolecular aromatic C? H/π interactions, which are evidenced by ultraviolet–visible and 1H NMR spectra as well as X‐ray single‐crystal structural analysis. However, the effect of the intramolecular aromatic C? H/π interactions on the spectral shift in poly[9,9‐dihexylfluorene‐2,7‐yleneethynylene‐coalt‐5,8‐(2,11‐dithia[3]paracyclo[3](4,4′)‐2,2′‐bipyridinophane)] ( P10 ) is much weaker. Most interestingly, the quenching behaviors of these two conjugated polymers are largely dependent on the polymer backbone. For example, the fluorescence of P7 is efficiently quenched by Cu2+, Co2+, Ni2+, Zn2+, Mn2+, and Ag+ ions. In contrast, only Cu2+, Co2+, and Ni2+ ions can partially quench the fluorescence of P10 , but much less efficiently than the fluorescence of P7 . The static Stern–Volmer quenching constants of Cu2+, Co2+, and Ni2+ ions toward P7 are of the order of 106 M?1, being 1300, 2500, and 37,300 times larger than those of P10 , respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4154–4164, 2006  相似文献   
22.
23.
This column is a place for those bits of contagious mathematics that travel from person to person in the community, because they are so elegant, suprising, or appealing that one has an urge to pass them on. Contributions are most welcome.  相似文献   
24.
25.
Cyclization of a polystyrene chain (Mn = 10,600; Mw/Mn = 1.09) both ends labeled with 4-(1-pyrenyl)butanoamide groups was studied in cyclohexane between 25 and 95°C. The amide groups (peptide bonds) at both ends can form an intrachain hydrogen bond between the amide hydrogen at one chain end and the carbonyl oxygen at the other. The presence of two sets of conformers, random coils, and chains cyclized through hydrogen bonding, complicates the data analysis. The pyrene excimer kinetics of this polymer is well described by a model composed of two monomers (hydrogen bonded and nonbonded chains) and one excimer, in equilibrium. The cyclization rate constant for hydrogen-bonded chains is larger than the one for nonhydrogen-bonded chains. The pyrene excimer binding energy (ca. 1.6 kcal/mol) is lower than the published value for nonhydrogen-bonded chains (~ 9 kcal/mol), suggesting that intrachain hydrogen bonding hinders the stabilization of the excimer. © 1994 John Wiley & Sons, Inc.  相似文献   
26.
MgO films were grown on (0 0 1) yttria-stabilized zirconia (YSZ) substrates by molecular beam epitaxy (MBE). The crystalline structures of these films were investigated using X-ray diffraction and transmission electron microscopy. Growth temperature was varied from 350 to 550 °C, with crystalline quality being improved at higher temperatures. The MgO films had a domain structure: (1 1 1)[1 1 2¯]MgO(0 0 1)[1 0 0]YSZ with four twin variants related by a 90° in-plane rotation about the [1 1 1]MgO axis. The observed epitaxial orientation was compared to previous reports of films grown by pulsed laser deposition and sputtering and explained as resulting in the lowest interface energy.  相似文献   
27.
The shock structure problem is one of the classical problems of fluid mechanics and at least for non-reacting dilute gases it has been considered essentially solved. Here we present a few recent findings, to show that this is not the case. There are still new physical effects to be discovered provided that the numerical technique is general enough to not rule them out a priori. While the results have been obtained for dense fluids, some of the effects might also be observable for shocks in dilute gases.  相似文献   
28.
It is shown that time-dependent temperatures in a transient, conductive system can be approximately modeled by a fractional-order differential equation, the order of which depends on the Biot number. This approximation is particularly suitable for complex shapes for which a first-principles approach is too difficult or computationally time-consuming. Analytical solutions of these equations can be written in terms of the Mittag-Leffler function. The approximation is especially useful if a suitable fractional-order controller is to be designed for the system.  相似文献   
29.
In this paper, a projection method is presented for solving the flow problems in domains with moving boundaries. In order to track the movement of the domain boundaries, arbitrary‐Lagrangian–Eulerian (ALE) co‐ordinates are used. The unsteady incompressible Navier–Stokes equations on the ALE co‐ordinates are solved by using a projection method developed in this paper. This projection method is based on the Bell's Godunov‐projection method. However, substantial changes are made so that this algorithm is capable of solving the ALE form of incompressible Navier–Stokes equations. Multi‐block structured grids are used to discretize the flow domains. The grid velocity is not explicitly computed; instead the volume change is used to account for the effect of grid movement. A new method is also proposed to compute the freestream capturing metrics so that the geometric conservation law (GCL) can be satisfied exactly in this algorithm. This projection method is also parallelized so that the state of the art high performance computers can be used to match the computation cost associated with the moving grid calculations. Several test cases are solved to verify the performance of this moving‐grid projection method. Copyright © 2004 John Wiley Sons, Ltd.  相似文献   
30.
This paper presents the applications of digital image correlation technique to the mesoscopic damage and fracture study of some granular based composite materials including steelfiber reinforced concrete, sandstone and crystal-polymer composite. The deformation fields of the composite materials resulted from stress localization were obtained by the correlation computation of the surface images with loading steps and thus the related damage prediction and fracture parameters were evaluated. The correlation searching could be performed either directly based on the gray levels of the digital images or from the wavelet transform (WT) coefficients of the transform spectrum. The latter was developed by the authors and showed higher resolution and sensitivity to the singularity detection. Because the displacement components came from the rough surfaces of the composite materials without any coats of gratings or fringes of optical interferometry, both surface profiles and the deformation fields of the composites were visualized which was helpful to compare each other to analyze the damage of those heterogeneous materials. The project supported by the National Natural Science Foundation of China (10125211 and 10072002), the Scientific Committee of Yunnan Province for the Program of Steel Fiber Reinforced Concrete, and the Institute of Chemical Materials, CAEP at Mianyang  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号