首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   3篇
  国内免费   2篇
化学   23篇
力学   12篇
数学   22篇
物理学   18篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   5篇
  2016年   5篇
  2015年   3篇
  2014年   8篇
  2013年   14篇
  2012年   7篇
  2011年   6篇
  2010年   4篇
  2009年   1篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2004年   7篇
  1995年   1篇
排序方式: 共有75条查询结果,搜索用时 15 毫秒
31.
1H nuclear magnetic resonance (NMR) imaging techniques have been used to image the extrusion aid (EA) in polyethylene (PE) pipe samples. The resulting two-dimensional images show the distribution of EA within the pipe. EA is found to be uniformly distributed in a normal pipe. Examples of degraded pipes, due to exposure to extreme conditions, show migration of EA to the pipes' wall surfaces. NMR images of a normal pipe and two examples of damaged pipes are presented. The imaging technique and the results are discussed. © 1995 John Wiley & Sons, Inc.  相似文献   
32.
Primal-dual interior-point methods (IPMs) have shown their power in solving large classes of optimization problems. However, at present there is still a gap between the practical behavior of these algorithms and their theoretical worst-case complexity results, with respect to the strategies of updating the duality gap parameter in the algorithm. The so-called small-update IPMs enjoy the best known theoretical worst-case iteration bound, but work very poorly in practice. To the contrary, the so-called large-update IPMs have superior practical performance but with relatively weaker theoretical results. In this paper we discuss the new algorithmic variants and improved complexity results with respect to the new family of Self-Regular proximity based IPMs for Linear Optimization problems, and their generalizations to Conic and Semidefinite Optimization This research was supported by the MITACS project “New IPMs and Software for Convex Conic-Linear Optimization and Their Application to Solve VLSI Circuit Layout Problems”, by an NSERC discovery grant, and the CRC program. The first author would also like to thank the Iranian Ministry of Science, Research and Technology for supporting his research.  相似文献   
33.
In this study, a large eddy simulation of the three-dimensional shear flow over a flow-excited Helmholtz resonator has been implemented. The simulations have been performed over a wide range of flow speeds to analyse the effect of the inlet flow properties on the excitation condition. For validation proposes, the results obtained from the numerical simulations have been compared with published experimental data and show that numerical modelling provides an accurate representation of the pressure fluctuations inside the cavity. The main objective of this paper is to gain an understanding of the flow features over a flow-excited Helmholtz resonator. To this end, using the numerical model, the interaction of a turbulent boundary layer with a Helmholtz resonator has been considered, and the characteristics of the flow inside the resonator and over the orifice for various flow conditions are also analysed.  相似文献   
34.
The adsorption behavior of pyrrole molecule with external surface of (5.0) on zigzag aluminum nitride nanotube (AlNNT) was studied using density functional theory calculations. It was found that the adsorption energy (Ead) of pyrrole on the surface of pristine nanotubes is about–11.99 kcal/mol. However, when nanotubes have been doped with P atom, the adsorption energy of pyrrole was increased. Calculation showed that for the phosphorus-doped nanotube the adsorption energy range is about–9.04 to?12.80 kcal/mol. AlNNT is a suitable adsorbent for pyrrole, so it can be used in adsorption and separation processes involving pyrrole. The doped AlNNT can potentially be used for pyrrole sensors for detection in environmental systems.  相似文献   
35.
36.
Using density functional calculations, we have investigated the adsorption of a H2S molecule on the pristine and Si-doped BeO nanotubes (BeONT). It was found that the H2S molecule is physically adsorbed on the pristine BeONT with adsorption energies ranging from 3.0 to 4.2 kcal/mol. Substituting a Be or O atom of the tube by Si increases the adsorption energy to 6.9–17.2 kcal/mol. We found that substituting an O atom by Si makes the electronic properties of the BeONT strongly sensitive to the H2S molecule. Therefore, the process of Si doping provides a good strategy for improving the sensitivity of BeONT to toxic H2S, which cannot be trapped and detected by the pristine BeONT. Also, the emitted electron current density from the SiO–BeONT will be significantly increased after the H2S adsorption.  相似文献   
37.
By means of density functional calculations, the structural and electronic properties of chemical modification of pristine and Ca-doped BeO nanotubes were investigated with NH3 and H20 molecules. It was found that the NH3 and H20 molecules can be adsorbed on the Be atom of the tube sidewall with the adsorption energies of about 36.1 and 39.0 kcal/mol, respectively. Density of states analysis shows that the electronic properties of the BeONT are slightly changed after the adsorption processes. Substitution of a Be atom in the tube surface with a Ca atom increases the adsorption energies by about 7.4 and 14.7 kcal/mol for NH3 and H20, respectively. Unlike the pristine tube, the electronic properties of Ca-doped BeONT are sensitive to NH3 and H20 molecules. Also, the Ca-doped tube is much more sensitive to H20 molecule than NH3 one.  相似文献   
38.
In magnetron sputtered indium-tin-oxide thin films of varying oxygen content, nanostructures were formed using tightly focused high-repetition rate near-infrared sub-15 femtosecond pulsed laser light. At radiant exposure well beyond the ablation threshold, cuts of 280-350 nm in width were generated. Illumination close to the ablation threshold resulted in periodic cuts of typically 20 nm in width at periodicities between 50 nm and 180 nm, as well as single sub-20 nm cuts. Subthreshold exposure, in combination with hydrochloric acid etching, yielded nanowires of 50 nm minimum lateral dimensions.  相似文献   
39.
40.
In the present paper, a hybrid filter is introduced for high accurate numerical simulation of shock‐containing flows. The fourth‐order compact finite difference scheme is used for the spatial discretization and the third‐order Runge–Kutta scheme is used for the time integration. After each time‐step, the hybrid filter is applied on the results. The filter is composed of a linear sixth‐order filter and the dissipative part of a fifth‐order weighted essentially nonoscillatory scheme (WENO5). The classic WENO5 scheme and the WENO5 scheme with adaptive order (WENO5‐AO) are used to form the hybrid filter. Using a shock‐detecting sensor, the hybrid filter reduces to the linear sixth‐order filter in smooth regions for damping high frequency waves and reduces to the WENO5 filter at shocks in order to eliminate unwanted oscillations produced by the nondissipative spatial discretization method. The filter performance and accuracy of the results are examined through several test cases including the advection, Euler and Navier–Stokes equations. The results are compared with that of a hybrid second‐order filter and also that of the WENO5 and WENO5‐AO schemes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号