首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196165篇
  免费   3304篇
  国内免费   403篇
化学   110204篇
晶体学   2234篇
力学   8079篇
综合类   7篇
数学   22499篇
物理学   56849篇
  2021年   1454篇
  2020年   1731篇
  2019年   1768篇
  2018年   2401篇
  2017年   2209篇
  2016年   3854篇
  2015年   2843篇
  2014年   3704篇
  2013年   8973篇
  2012年   8029篇
  2011年   9408篇
  2010年   6126篇
  2009年   5788篇
  2008年   8355篇
  2007年   8443篇
  2006年   7769篇
  2005年   7271篇
  2004年   6363篇
  2003年   5419篇
  2002年   5266篇
  2001年   5056篇
  2000年   3939篇
  1999年   3011篇
  1998年   2582篇
  1997年   2501篇
  1996年   2390篇
  1995年   2140篇
  1994年   2192篇
  1993年   2042篇
  1992年   2328篇
  1991年   2396篇
  1990年   2188篇
  1989年   2184篇
  1988年   2078篇
  1987年   1969篇
  1986年   1876篇
  1985年   2527篇
  1984年   2632篇
  1983年   2110篇
  1982年   2368篇
  1981年   2234篇
  1980年   2131篇
  1979年   2274篇
  1978年   2422篇
  1977年   2257篇
  1976年   2350篇
  1975年   2230篇
  1974年   2293篇
  1973年   2271篇
  1972年   1447篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
971.
High temperature oxidation of metals leads to residual stresses in the metal and in the oxide. In this work, we try to predict the evolution of the residual stresses in the growing oxides layers, during isothermal oxidation. The origin of these stresses is based on the microstructural model of Clarke, however, another justification is proposed, assuming a proportional dependence of the growth strain with the oxide layer thickness. Using the mechanics of thin layers, as well as the analysis proposed to describe the growth strain, a system of equations are deduced that predict the stresses evolution with oxidation time. Numerical analysis is performed, leading to a set of theoretical curves.  相似文献   
972.
973.
The thermolysis of the zinc trimethylsilylchalcogenolate complexes (N,N′-tmeda)Zn(ESiMe3)2 (E = S, 1; E = Se, 2) and (3,5-Me2-C5H3N)2Zn(ESiMe3)2 (E = S, 3; E = Se, 4) has been investigated. Solid-state thermal decomposition of complexes 1–4 above 250°C results in the formation of hexagonal ZnS and cubic ZnSe, respectively, via the liberation of TMEDA (12) or 3,5-lutidine (34) and E(SiMe3)2. Solid-state or solution thermolysis of these complexes up to 200°C produces nanocrystalline ZnS and ZnSe materials whose surface is protected by either coordinated TMEDA or 3,5-lutidine ligands. The progress of the step-wise solid-state decomposition of these complexes was monitored by thermogravimetric and single differential thermal analysis and volatile decomposition products in both solution and solid-state experiments were identified by GC/MS.Dedicated to Professor Brian F. G. Johnson on the occasion of his retirement.  相似文献   
974.
975.
The cycloterpolymerizations of single‐, twin‐, and triple‐tailed hydrophobes with hydrophilic monomer N,N‐diallyl‐N‐carboethoxymethylammonium chloride and sulfur dioxide afforded a series of cationic polyelectrolytes (CPEs) in excellent yields. These CPEs, upon the acidic hydrolysis of the pendent ester groups, gave the corresponding pH‐responsive cationic acid salts, which, upon a treatment with sodium hydroxide, were converted to polybetaines (PBs), anionic polyelectrolytes (APEs), and PB/APE polymers containing various proportions of zwitterionic (PB) and anionic fractions (APE) in the polymer chain. At a shear rate of 0.36 s−1 at 30 °C, salt‐free water solutions of the CPEs (2 g/dL) containing 8, 4, and 2.67 mol % of the single‐, twin‐, and triple‐tailed hydrophobes (all having 8 mol % octyloxy tails) had apparent viscosity values of 70, 2800, and 396,000 cps, respectively. The PB/APE polymer with a ratio of 33:67 for the zwitterionic and anionic fractions in the polymer chain gave the highest viscosity value. The superior viscosity behavior of the polymers containing the triple‐tailed hydrophobe was attributed to the blocky nature of the comonomer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5480–5494, 2006  相似文献   
976.
We present simulation results for the phase behavior of a single chain for a flexible lattice polymer model using the Wang-Landau sampling idea. Applying this new algorithm to the problem of the homopolymer collapse allows us to investigate not only the high temperature coil–globule transition but also an ensuing crystallization at lower temperature. Performing a finite size scaling analysis on the two transitions, we show that they coincide for our model in the thermodynamic limit corresponding to a direct collapse of the random coil into the crystal without intermediate coil–globule transition. As a consequence, also the many chain phase diagram of this model can be predicted to consist only of gas and crystal phase in the limit of infinite chain length. This behavior is in agreement with findings on the phase behavior of hard-sphere systems with a relatively short-ranged attractive square well. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2542–2555, 2006  相似文献   
977.
Nitroxide‐mediated radical polymerization (NMRP) of 2‐(dimethylamino)ethyl acrylate (DMAEA) was carried out at 100–120 °C, initiated by MONAMS, an alkoxyamine based on Ntert‐butyl‐N‐(1‐diethyl phosphono‐2,2‐dimethylpropyl)nitroxide, SG1. Controlled polymerization can be achieved by the addition of free SG1 (the initial molar ratio of SG1 to MONAMS ranged from 0.06 to 0.12), giving a linear first‐order kinetic plot up to 55–70% conversion depending on the reaction conditions. The molecular weights show a near linear increase with conversion; however, they deviate to some extent with theoretical values. SG1‐mediated polymerization of DMAEA at 112 °C is also controlled in organic solvents (N,N‐dimethylformide, anisole, xylene). Polymerization rate increases with increasing solvent polarity. Chain transfer to polymer produces ~1 mol % branches in bulk and 1.2–1.9 mol % in organic solvents, typical of those for acrylates. From poly(styrene) (pS) and poly(n‐butyl acrylate) (pBA) macroinitiators, amphiphilic di‐ and triblock copolymers p(S‐b‐DMAEA), p(DMAEA‐b‐S‐b‐DMAEA), p(BA‐b‐DMAEA), and p(DMAEA‐b‐BA‐b‐DMAEA) were synthesized via NMRP at 110 °C. Polymers were characterized by GPC, NMR, surface tension measurements, and DSC. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 414–426, 2006  相似文献   
978.
Ethylene glycol (EG) initiated, hydroxyl‐telechelic poly(L ‐lactide) (PLLA) was employed as a macroinitiator in the presence of a stannous octoate catalyst in the ring‐opening polymerization of 5‐methyl‐5‐benzyloxycarbonyl‐1,3‐dioxan‐2‐one (MBC) with the goal of creating A–B–A‐type block copolymers having polycarbonate outer blocks and a polyester center block. Because of transesterification reactions involving the PLLA block, multiblock copolymers of the A–(B–A)n–B–A type were actually obtained, where A is poly(5‐methyl‐5‐benzyloxycarbonyl‐1,3‐dioxan‐2‐one), B is PLLA, and n is greater than 0. 1H and 13C NMR spectroscopy of the product copolymers yielded evidence of the multiblock structure and provided the lactide sequence length. For a PLLA macroinitiator with a number‐average molecular weight of 2500 g/mol, the product block copolymer had an n value of 0.8 and an average lactide sequence length (consecutive C6H8O4 units uninterrupted by either an EG or MBC unit) of 6.1. For a PLLA macroinitiator with a number‐average molecular weight of 14,400 g/mol, n was 18, and the average lactide sequence length was 5.0. Additional evidence of the block copolymer architecture was revealed through the retention of PLLA crystallinity as measured by differential scanning calorimetry and wide‐angle X‐ray diffraction. Multiblock copolymers with PLLA crystallinity could be achieved only with isolated PLLA macroinitiators; sequential addition of MBC to high‐conversion L ‐lactide polymerizations resulted in excessive randomization, presumably because of residual L ‐lactide monomer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6817–6835, 2006  相似文献   
979.
The synthesis of a block copolymer poly(vinyl chloride)‐b‐poly(n‐butyl acrylate)‐b‐poly(vinyl chloride) is reported. This new material was synthesized by single‐electron‐transfer/degenerative‐chain‐transfer‐mediated living radical polymerization (SET‐DTLRP) in two steps. First, a bifunctional macroinitiator of α,ω‐di(iodo)poly (butyl acrylate) [α,ω‐di(iodo)PBA] was synthesized by SET‐DTLRP in water at 25 °C. The macroinitiator was further reinitiated by SET‐DTLRP, leading to the formation of the desired product. This ABA block copolymer was synthesized with high initiator efficiency. The kinetics of the copolymerization reaction was studied for two PBA macroinitiators with number–average molecular weight of 10 k and 20 k. The relationship between the conversion and the number–average molecular weight was found to be linear. The dynamic mechanical thermal analysis suggests just one phase, indicating that copolymer behaves as a single material with no phase separation. This methodology provides the access to several block copolymers and other complex architectures that result from combinations of thermoplastics (PVC) and elastomers (PBA). From industrial standpoint, this process is attractive, because of easy experimental setup and the environmental friendly reaction medium. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3001–3008, 2006  相似文献   
980.
Living radical polymerization of n‐butyl acrylate was achieved by single electron transfer/degenerative‐chain transfer mediated living radical polymerization in water catalyzed by sodium dithionate. The plots of number–average molecular weight versus conversion and ln[M]0/[M] versus time are linear, indicating a controlled polymerization. This methodology leads to the preparation of α,ω‐di(iodo) poly (butyl acrylate) (α,ω‐di(iodo)PBA) macroinitiators. The influence of polymerization degree ([monomer]/[initiator]), amount of catalyst, concentration of suspending agents and temperature were studied. The molecular weight distributions were determined using a combination of three detectors (TriSEC): right‐angle light scattering (RALLS), a differential viscometer (DV), and refractive index (RI). The methodology studied in this work represents a possible route to prepare well‐tailored macromolecules made of butyl acrylate in an environmental friendly reaction medium. Moreover, such materials can be subsequently functionalized leading to the formation of different block copolymers of composition ABA. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2809–2825, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号