首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6879篇
  免费   342篇
  国内免费   46篇
化学   5188篇
晶体学   41篇
力学   138篇
数学   824篇
物理学   1076篇
  2023年   67篇
  2022年   104篇
  2021年   115篇
  2020年   144篇
  2019年   163篇
  2018年   130篇
  2017年   115篇
  2016年   262篇
  2015年   202篇
  2014年   212篇
  2013年   342篇
  2012年   560篇
  2011年   642篇
  2010年   293篇
  2009年   232篇
  2008年   478篇
  2007年   481篇
  2006年   477篇
  2005年   445篇
  2004年   313篇
  2003年   284篇
  2002年   243篇
  2001年   93篇
  2000年   46篇
  1999年   45篇
  1998年   45篇
  1997年   48篇
  1996年   49篇
  1995年   36篇
  1994年   43篇
  1993年   40篇
  1992年   30篇
  1991年   31篇
  1990年   24篇
  1989年   27篇
  1988年   19篇
  1987年   21篇
  1986年   20篇
  1985年   29篇
  1984年   19篇
  1982年   21篇
  1981年   29篇
  1980年   16篇
  1979年   26篇
  1978年   19篇
  1977年   18篇
  1976年   19篇
  1975年   14篇
  1974年   16篇
  1973年   21篇
排序方式: 共有7267条查询结果,搜索用时 15 毫秒
51.
Lipase from rape (Brassica napus L., immobilized onto celite, catalyzes esterification and transesterification reactions in hexane. The activity of the lipase is stimulated up to 35 fold by the addition of water (1.3% w/v). The activity of the lipase in hydrolysis is about 8 times higher than in the esterification reactions in hexane. Interesteri-fication reactions between mono- and diacylglycerols and transesterification reactions of mono- and diacylglycerols with alcohols were also catalyzed at relatively high rates but transesterification/esterification of these acylglycerols with fatty acids was comparatively slow. In transesterification reactions, triacylglycerols reacted rather slowly.  相似文献   
52.
The reactions of syn-1-haloethyl p-chlorophenyl sulfoxides (halogen = Cl, Br) with main-group organometallic reagents (n-BuMgCl, MeLi, n-BuLi, s-BuLi, and t-BuLi) in THF and PhMe solvents were examined. Product distributions were analyzed to determine the extent of competing sulfoxide ligand exchange, halogen-metal exchange, and deprotonation reaction pathways. A combination of t-BuLi in PhMe was optimal for initiation of sulfoxide ligand exchange from syn-1-chloroethyl p-chlorophenyl sulfoxide.  相似文献   
53.
In this article, we describe, for the first time, direct comparisons of the detailed structures of two small molecule organic semiconductors, oligo(phenylenvinylene) (OPV) molecules with chains of five and six phenyl rings (5R-OC(8)H(17) and 6R-OC(8)H(17)), respectively, and their luminescence properties on a single molecule level. Our data originate from a combination of two powerful diagnostic tools in physical chemistry: ion mobility and single molecule fluorescence spectroscopy. These techniques enable us to precisely determine the shapes of isolated molecules in the gas phase and to correlate these structures to the emission from single molecules supported on bare glass substrates. The principal structural uncertainty in OPVs is the (possible) presence and location of cis-vinylene linkages (cis-defects) in the oligomer. The results show that the structures observed in the gas phase are strongly correlated to the categories of molecules observed in the single molecule polarization anisotropy measurements with nearly identical distributions for the two OPV molecules studied. Each category is also characterized by the luminescence efficiency of the molecules in each class, providing a direct correlation between the luminescence efficiency and the shape of the molecule. This combination of techniques provides a level of information far beyond that obtained via any other analytical technique.  相似文献   
54.
Macrocycle 1 is a new highly potent analogue of bryostatin 1, a promising anti-cancer agent currently in human clinical trials. In vitro, 1 displays picomolar affinity for PKC and exhibits over 100-fold greater potency than bryostatin 1 when tested against various human cancer cell lines. Macrocycle 1 can be generated in clinically required amounts by chemical synthesis in only 19 steps (LLS) and represents a new clinical lead for the treatment of cancer.  相似文献   
55.
Asphaltenes from four different crude oils (Arab Heavy, B6, Canadon Seco, and Hondo) were fractionated in mixtures of heptane and toluene and analyzed chemically, by vapor pressure osmometry (VPO), and by small angle neutron scattering (SANS). Solubility profiles of the asphaltenes and their subfractions indicated strong cooperative asphaltene interactions of a particular subfraction that is polar and hydrogen bonding. This subfraction had lower H/C ratios and modestly higher N, V, Ni, and Fe contents than the less polar and more soluble subfraction of asphaltenes. VPO and SANS studies indicated that the less soluble subfractions formed aggregates that were considerably larger than the more soluble subfractions. In general, asphaltene aggregate size increased with decreasing solvent aromaticity up to the solubility limit, beyond which the aggregate size decreased with heptane addition. The presence of a low wavevector Q feature in the scattering curves at 25 degrees C indicated that the individual aggregates were flocculating; however, the intensity of the feature was diminished upon heating of the samples to 80 degrees C. The solubility mechanism for Canadon Seco asphaltenes, the largest aggregate formers, appears to be dominated by aromatic pi-bonding interactions due to their low H/C ratio and low nitrogen content. B6 and Hondo asphaltenes formed similar-sized aggregates in heptol and the solubility mechanism is most likely driven by polar interactions due to their relatively high H/C ratios and high nitrogen contents. Arab Heavy, the least polar asphaltene, had a H/C ratio similar to Canadon Seco but formed the smallest aggregates in heptol. The enhancement in polar and pi-bonding interactions for the less soluble subfraction indicated by elemental analysis is reflected by the aggregate size from SANS. The less soluble asphaltenes contribute the majority of species responsible for aggregation and likely cause many petroleum production problems such as pipeline deposition and water-in-oil emulsion stabilization.  相似文献   
56.
A kinetic investigation into the origin of enantioselectivity for the Pd[(-)-sparteine]Cl(2)-catalyzed aerobic oxidative kinetic resolution (OKR) is reported. A mechanism to account for a newly discovered chloride dissociation from Pd[(-)-sparteine]Cl(2) prior to alcohol binding is proposed. The mechanism includes (1) chloride dissociation from Pd[(-)-sparteine]Cl(2) to form cationic Pd(-)-sparteine]Cl, (2) alcohol binding, (3) deprotonation of Pd-bound alcohol to form a Pd-alkoxide, and (4) beta-hydride elimination of Pd-alkoxide to form ketone product and a Pd-hydride. Utilizing the addition of (-)-sparteine HCl to control the [Cl(-)] and [H(+)] and the resulting derived rate law, the key microscopic kinetic and thermodynamic constants were extracted for each enantiomer of sec-phenethyl alcohol. These constants allow for the successful simulation of the oxidation rate in the presence of exogenous (-)-sparteine HCl. A rate law for oxidation of the racemic alcohol was derived that allows for the successful prediction of the experimentally measured k(rel) values when using the extracted constants. Besides a factor of 10 difference between the relative rates of beta-hydride elimination for the enantiomers, the main enhancement in enantiodetermination results from a concentration effect of (-)-sparteine HCl and the relative rates of reprotonation of the diastereomeric Pd-alkoxides.  相似文献   
57.
Hundreds of catalytic methods are developed each year to meet the demand for high-purity chiral compounds. The computational design of enantioselective organocatalysts remains a significant challenge, as catalysts are typically discovered through experimental screening. Recent advances in combining quantum chemical computations and machine learning (ML) hold great potential to propel the next leap forward in asymmetric catalysis. Within the context of quantum chemical machine learning (QML, or atomistic ML), the ML representations used to encode the three-dimensional structure of molecules and evaluate their similarity cannot easily capture the subtle energy differences that govern enantioselectivity. Here, we present a general strategy for improving molecular representations within an atomistic machine learning model to predict the DFT-computed enantiomeric excess of asymmetric propargylation organocatalysts solely from the structure of catalytic cycle intermediates. Mean absolute errors as low as 0.25 kcal mol−1 were achieved in predictions of the activation energy with respect to DFT computations. By virtue of its design, this strategy is generalisable to other ML models, to experimental data and to any catalytic asymmetric reaction, enabling the rapid screening of structurally diverse organocatalysts from available structural information.

A machine learning model for enantioselectivity prediction using reaction-based molecular representations.  相似文献   
58.
Treatment of 5-trimethylsilylthebaine with L-Selectride gave rise to a rearrangement to 10-trimethylsilylbractazonine through migration of the phenyl group, whereas treatment of thebaine with strong Lewis acids is known to lead to a similar rearrangement through migration of the alkyl bridge to give, after reduction, (+)-neodihydrothebaine. It is suggested that the rearrangement of the alkyl group of thebaine is favored due to the formation of a tertiary benzylic cation. However, for 5-trimethylsilylthebaine, the lithium ion of L-Selectride acts as the Lewis acid and the beta-silyl effect dominates in the stabilization of any positive charge. This rearrangement provides a clear example of the greater relative migratory aptitude of phenyl groups over alkyl groups, and provides an efficient synthesis of (+)-bractazonine from thebaine.  相似文献   
59.
A series of structurally related binuclear metallacycles [Cd(NO(3))(2)L](2), where L is an angular exo-bidentate ligand, have been synthesized. Each metallacycle contains two coordinatively unsaturated, chiral metal centers within a single molecule, and the assembly of these metallacycles into polymeric framework structures has been studied systematically for the first time. Stereoselective homochiral association of [Cd(NO(3))(2)L](2) leads to the formation of helical coordination polymers, whereas meso type association results in nonhelical chain structures. The type of stereoselective aggregation depends on the conditions of self-assembly as well as on ligand functionality. Both helical and nonhelical polymeric complexes have been isolated for the metallacycle [Cd(NO(3))(2)(2,4'-pyacph)](2) (2,4'-pyacph = 2,4'-(4-ethynylphenyl)bipyridyl). Homochiral association results in the formation of helical [Cd(NO(3))]( infinity ) chains which link the binuclear [Cd(NO(3))(2)(2,4'-pyacph)](2) metallacycles into racemic two-dimensional sheets which contain both P and M [Cd(NO(3))]( infinity ) helices. In contrast, meso-association leads to the formation of nonhelical one-dimensional chains. It is shown that the product of homochiral association is predominately formed at room temperature and that of meso-association is generated at elevated temperatures. Thus, it may be concluded that the homochiral association appears to be energetically less favorable than the meso-association, a conclusion that has been confirmed by theoretical calculations of the crystal lattice energy. Several high-yield syntheses of bipyridyl-type ligands used for metallacyclic assembly are also reported.  相似文献   
60.
Square-planar copper(II) and nickel(II) derivatives of the cis-dithiolate N(2)S(2) ligand bis(N,N'-2-mercapto-2-methylpropyl)-1,5-diazocyclooctane, (bme*daco)M, nucleate four Cu(I)Cl moieties, forming M(II)(2)Cu(I)(4)S(4) clusters with unusual triply bridging thiolates, mu(3)-SR, in the topological form of adamantane. As determined by X-ray crystallography, the (bme*daco)M (M = Cu or Ni) metallothiolate serves as a bidentate ligand that bridges four Cu(I) ions, utilizing all lone pairs on sulfurs. Further characterization by electrochemical and electronic spectral measurements suggests greater electron delocalization in the all-copper complex as compared to the NiCu heterometallic complex. Mass spectral data imply that the mixed-metal Ni(II)(2)Cu(I)(4)S(4) is more stable toward CuCl loss than Cu(II)(2)Cu(I)(4)S(4), a result that is corroborated by extraction of Cu(I) by 1,2-bis(diphenylphosphino)ethane in the latter but not the former.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号