首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   269篇
  免费   19篇
化学   218篇
晶体学   1篇
力学   3篇
数学   30篇
物理学   36篇
  2024年   1篇
  2023年   6篇
  2022年   26篇
  2021年   30篇
  2020年   11篇
  2019年   30篇
  2018年   22篇
  2017年   12篇
  2016年   19篇
  2015年   6篇
  2014年   15篇
  2013年   18篇
  2012年   21篇
  2011年   20篇
  2010年   10篇
  2009年   10篇
  2008年   9篇
  2007年   8篇
  2006年   4篇
  2005年   6篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
排序方式: 共有288条查询结果,搜索用时 0 毫秒
11.
The flexibility of dose and dosage forms makes 3D printing a very interesting tool for personalized medicine, with fused deposition modeling being the most promising and intensively developed method. In our research, we analyzed how various types of disintegrants and drug loading in poly(vinyl alcohol)-based filaments affect their mechanical properties and printability. We also assessed the effect of drug dosage and tablet spatial structure on the dissolution profiles. Given that the development of a method that allows the production of dosage forms with different properties from a single drug-loaded filament is desirable, we developed a method of printing ketoprofen tablets with different dose and dissolution profiles from a single feedstock filament. We optimized the filament preparation by hot-melt extrusion and characterized them. Then, we printed single, bi-, and tri-layer tablets varying with dose, infill density, internal structure, and composition. We analyzed the reproducibility of a spatial structure, phase, and degree of molecular order of ketoprofen in the tablets, and the dissolution profiles. We have printed tablets with immediate- and sustained-release characteristics using one drug-loaded filament, which demonstrates that a single filament can serve as a versatile source for the manufacturing of tablets exhibiting various release characteristics.  相似文献   
12.
Traditional wastewater purification processes are based on a combination of physical, chemical, and biological methods; however, typical electrochemical techniques for removing pollutants require large amounts of electrical energy. In this study, we report on a process of wastewater purification, through continuous anodic dissolution of iron anode for aerated Cu/Fe galvanic cell in synthetic Na2SO4 wastewater solution. Electrochemical experiments were conducted by means of a laboratory size electrolyzer, where electrocoagulation along with electrooxidation phenomena were examined for wastewater containing Acid Mixture dye. The above was visualized through the employment of electrochemical (cyclic voltammetry and ac impedance spectroscopy techniques) along with instrumental spectroscopy analyses.  相似文献   
13.
The development of multicomponent molecular systems for the photocatalytic reduction of water to hydrogen has experienced considerable growth since the end of the 1970s. Recently, with the aim of improving the efficiency of the catalysis, single‐component photocatalysts have been developed in which the photosensitizer is chemically coupled to the hydrogen‐evolving catalyst in the same molecule through a bridging ligand. Until now, none of these photocatalysts has operated efficiently in pure aqueous solution: a highly desirable medium for energy‐conversion applications. Herein, we introduce a new ruthenium–rhodium polypyridyl complex as the first efficient homogeneous photocatalyst for H2 production in water with turnover numbers of several hundred. This study also demonstrates unambiguously that the catalytic performance of such systems linked through a nonconjugated bridge is significantly improved as compared to that of a mixture of the separate components.  相似文献   
14.
Demand for long‐lasting antifouling surfaces has steered the development of accessible, novel, biocompatible and environmentally friendly materials. Inspired by lubricin (LUB), a component of mammalian synovial fluid with excellent antifouling properties, three block polymers offering stability, efficacy, and ease of use were designed. The bottlebrush‐structured polymers adsorbed strongly on silica surfaces in less than 10 minutes by a simple drop casting or online exposure method and were extremely stable in high‐salinity solutions and across a wide pH range. Antifouling properties against proteins and bacteria were evaluated with different techniques and ultralow fouling properties demonstrated. With serum albumin and lysozyme adsorption <0.2 ng cm?2, the polymers were 50 and 25 times more effective than LUB and known ultralow fouling coatings. The antifouling properties were also tested under MPa compression pressures by direct force measurements using surface forces apparatus. The findings suggest that these polymers are among the most robust and efficient antifouling agents currently known.  相似文献   
15.
The photophysical properties of 5‐deazaalloxazine and 1,3‐dimethyl‐5‐deazaalloxazine were studied in different solvents. These compounds have higher values of fluorescence quantum yields and longer fluorescence lifetimes, compared to those obtained for their alloxazine analogs. Electronic structure and S0Si transitions were investigated using the ab initio methods [MP2, CIS(D), EOM‐CCSD] with the correlation‐consistent basis sets. Also the time‐dependent density functional theory (TD‐DFT) has been employed. The lowest singlet excited states of 5‐deazaalloxazine and 1,3‐dimethyl‐5‐deazaalloxazine are predicted to have the π, π* character, whereas similar alloxazines have two close‐lying π, π* and n, π* transitions. Experimental steady‐state and time‐resolved spectral studies indicate formation of an isoalloxazinic excited state via excited‐state double‐proton transfer (ESDPT) catalyzed by an acetic acid molecule that forms a hydrogen bond complex with the 5‐deazaalloxazine molecule. Solvatochromism of both 5‐deazaalloxazine and its 1,3‐dimethyl substituted derivative was analyzed using the Kamlet–Taft scale and four‐parameter Catalán solvent scale. The most significant result of our studies is that the both scales show a strong influence of solvent acidity (hydrogen bond donating ability) on the emission properties of these compounds, indicating the importance of intermolecular solute–solvent hydrogen‐bonding interactions in their excited state.  相似文献   
16.
Polytype instability of SiC epitaxial films was the main focus of attention in the experiment performed since this factor has a decisive influence on graphene growth, which was the second stage of the experiment. Layers deposited in various initial C/Si ratios were analyzed.  相似文献   
17.

Abstract  

Ru-catalyzed synthesis of mixed alkyl–alkyl acetals via addition of primary alcohols to allyl ethers has been extended to include long-chain and/or functionalized substrates. The catalytic systems for these reactions were generated from RuCl2(PPh3)3 and [RuCl2(1,5-COD)]x and phosphines [PPh3 or P(p-chlorophenyl)3] or SbPh3. Of particular importance is the almost quantitative elimination of transacetalization. The addition proceeds through allyl complexes, not via isomerization of allyl ethers––subsequent addition of ROH to vinyl ethers.  相似文献   
18.
The IR spectrum of V4Nb18O55 has been compared with the IR spectra of selected niobates of known structures to show structural relations between these compounds. This comparison shows that V4Nb18O55 has crystal structure related to T-Nb2O5, W16Nb18O94 and Ba2NaNb5O15. On the other hand, reaction between V2O5 and H-Nb2O5 yields a solid solution of V2O5 in VNb9O25. It has been proposed two models of synthesized solid solution with formulas V1+xNb9-xO25 or V1+xNb9O25+5x/2.Independently of Nb2O5 polymorph, used for synthesis, the metastable compound VNbO5 cannot be synthesized in the solid state below 650°C   相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号